matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenznachweis Cauchyfolge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenznachweis Cauchyfolge
Konvergenznachweis Cauchyfolge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenznachweis Cauchyfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 Mo 19.04.2010
Autor: winston

Guten Abend,

ich soll die Konvergenz einer Cauchy-Folge nachweisen. Zuerst einmal habe ich den Konvergenznachweis für die Folge 1/n erbracht. Dazu war [mm] \varepsilon [/mm] > 0 vorgegeben. Nach Definition der Cauchy-Folge gilt dementsprechend [mm] |a_m [/mm] - [mm] a_n| [/mm] = |1/m - 1/n| [mm] \le [/mm] |1/m + 1/n|.
Wählt man [mm] n_0 [/mm] > [mm] 2/\varepsilon, [/mm] woraus für alle Ungleichungen 1/m, 1/n [mm] \le 1/n_0 [/mm] gilt und daher [mm] |a_m [/mm] - [mm] a_n| [/mm] = 1/m + 1/n [mm] \le 2/n_0 [/mm] < [mm] \varepsilon [/mm] für alle m, n [mm] \ge n_0. [/mm]
Damit ist die Folge eine Cauchy-Folge und folglich konvergent.
Meine eigentliche Frage ist nun, wenn die Folge [mm] 1/n^2 [/mm] lautet, ob ich den Nachweis genauso die oben gezeigt erbringen kann und ich nur überall da, wo m bzw. n steht, ich [mm] m^2 [/mm] und [mm] n^2 [/mm] einsetze oder ob ich noch andere Sachen beachten muss.

Hier die Frage nochmal mit einem Formeleditor geschrieben:

http://img80.imageshack.us/img80/25/frage.png

Ich bedanke mich für eure Hilfe schon einmal recht herzlich im Voraus!


Mit freundlichen Grüßen,
Winston

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/Konvergenznachweis-einer-Cauchy-Folge
http://www.uni-protokolle.de/foren/viewt/262024,0.html

        
Bezug
Konvergenznachweis Cauchyfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:13 Mo 19.04.2010
Autor: MontBlanc

Hi,

> Guten Abend,
>  
> ich soll die Konvergenz einer Cauchy-Folge nachweisen.
> Zuerst einmal habe ich den Konvergenznachweis für die
> Folge 1/n erbracht. Dazu war [mm]\varepsilon[/mm] > 0 vorgegeben.
> Nach Definition der Cauchy-Folge gilt dementsprechend [mm]|a_m[/mm]
> - [mm]a_n|[/mm] = |1/m - 1/n| [mm]\le[/mm] |1/m + 1/n|.
>  Wählt man [mm]n_0[/mm] > [mm]2/\varepsilon,[/mm] woraus für alle

> Ungleichungen 1/m, 1/n [mm]\le 1/n_0[/mm] gilt und daher [mm]|a_m[/mm] - [mm]a_n|[/mm]
> = 1/m + 1/n [mm]\le 2/n_0[/mm] < [mm]\varepsilon[/mm] für alle m, n [mm]\ge n_0.[/mm]

Du möchtest also zeigen, dass [mm] \bruch{1}{n^2} [/mm] eine Cauchy-Folge ist. Das heißt du möchtest, dass

$ [mm] \forall\ \epsilon>0\ \exists\ N\in\IN\ \forall\ n,m\ge [/mm] N [mm] \Rightarrow |a_m-a_n|<\epsilon [/mm] $
Schreibe dafür um [mm] |a_n-a_m|=|a_n-a_m+L-L|\le|a_n-L|+|a_m-L| [/mm]
zeige nun, dass

$ [mm] \forall\ \epsilon>0\ \exists N_1\in\IN\ \forall\ n\ge N_1 \Rightarrow |a_n-L|<\bruch{\epsilon}{2} [/mm] $

und

$ [mm] \forall\ \epsilon>0\ \exists N_2\in\IN\ \forall\ m\ge N_2\ \Rightarrow |a_m-L|< \bruch{\epsilon}{2} [/mm] $

Wähle dann [mm] N=max\{N_1,N_2\} [/mm] und zeige, dass daraus folgt, dass
$ [mm] \forall\ \epsilon>0\ \exists\ N\in\IN\ \forall\ n,m\ge [/mm] N [mm] \Rightarrow |a_m-a_n|<\epsilon [/mm] $

> Damit ist die Folge eine Cauchy-Folge und folglich
> konvergent.
>  Meine eigentliche Frage ist nun, wenn die Folge [mm]1/n^2[/mm]
> lautet, ob ich den Nachweis genauso die oben gezeigt
> erbringen kann und ich nur überall da, wo m bzw. n steht,
> ich [mm]m^2[/mm] und [mm]n^2[/mm] einsetze oder ob ich noch andere Sachen
> beachten muss.
>  
> Hier die Frage nochmal mit einem Formeleditor geschrieben:
>  
> http://img80.imageshack.us/img80/25/frage.png
>  
> Ich bedanke mich für eure Hilfe schon einmal recht
> herzlich im Voraus!
>  
>
> Mit freundlichen Grüßen,
>  Winston
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  
> http://www.onlinemathe.de/forum/Konvergenznachweis-einer-Cauchy-Folge
>  http://www.uni-protokolle.de/foren/viewt/262024,0.html


Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]