matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzkriterien
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenzkriterien
Konvergenzkriterien < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzkriterien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:00 Mi 09.12.2009
Autor: MatheMaexchen

Aufgabe
Weisen Sie die absolute Konvergenz der Reihe [mm] \summe_{k=1}^{\infty} (-1)^{k} [/mm] * [mm] \bruch{1}{k} [/mm] * ( [mm] \bruch{1}{3} [/mm] + [mm] \bruch{1}{k})^{k} [/mm] nach.
HINWEIS: [mm] \limes_{k\rightarrow\infty} \wurzel[k]{k} [/mm] = 1

Hallo an alle,

bei dieser Aufgabe habe ich den Tipp bekommen mit dem Wurzelkriterium zu arbeiten [mm] (\summe_{k=0}^{\infty} a_{k} [/mm] konvergiert  absolut, wenn ein [mm] q\in \IR [/mm] exisitiert, mit 0<q<1 und folgendes gilt: [mm] \wurzel[n]{|a_{n}|} \le [/mm] q; für alle n [mm] \in \IN [/mm] )
da müsste dann ja stehen: [mm] \wurzel[n]{(-1)^{n} * \bruch{1}{n} * ( \bruch{1}{3} + \bruch{1}{n})^{n}} [/mm]
darf ich die faktoren auseinander ziehen? also das ich dann [mm] \wurzel[n]{(-1)^{n}} [/mm] * [mm] \wurzel[n]{\bruch{1}{10}} [/mm] * [mm] \wurzel[n]{(\bruch{1}{3} + \bruch{1}{n})^{n}} [/mm] habe?
wenn ja, ist das dann das selbe wie -1 * [mm] \wurzel[n]{\bruch{1}{10}} [/mm] * [mm] (\bruch{1}{3} [/mm] + [mm] \bruch{1}{n}) [/mm] ?
wenn ich dann davon versuche den grenzwert zu berechnen komm ich im enteffekt auf [mm] -\bruch{1}{3} [/mm] , kann das stimmen oder hab ich schon irgendwo einen fehler?
schonmal im vorraus danke für eure hilfe
lg

        
Bezug
Konvergenzkriterien: Antwort
Status: (Antwort) fertig Status 
Datum: 23:17 Mi 09.12.2009
Autor: steppenhahn

Hallo MatheMaexchen,

Du hast einige Ungenauigkeiten in deiner Lösung.
Zunächst ist im Wurzelkriterium gar kein Limes zu sehen.

Indem du aber zeigst, dass der Grenzwert echt kleiner als 1 ist, hast du auch gezeigt, dass ab einem bestimmten n die Forderung des Wurzelkriteriums erfüllt ist. Wichtig: Manchmal existiert vielleicht gar kein Limes. Du hast aber Glück, hier existiert er, und du kannst es so machen, wie du es oben machst.

> bei dieser Aufgabe habe ich den Tipp bekommen mit dem
> Wurzelkriterium zu arbeiten [mm](\summe_{k=0}^{\infty} a_{k}[/mm]
> konvergiert  absolut, wenn ein [mm]q\in \IR[/mm] exisitiert, mit
> 0<q<1 und folgendes gilt: [mm]\wurzel[n]{|a_{n}|} \le[/mm] q; für
> alle n [mm]\in \IN[/mm] )
>  da müsste dann ja stehen: [mm]\wurzel[n]{(-1)^{n} * \bruch{1}{n} * ( \bruch{1}{3} + \bruch{1}{n})^{n}}[/mm]

Das ist (fast) richtig. Du hast die Beträge vergessen, und den Limes:

[mm]\lim_{n\to\infty}\left(\wurzel[n]{\left|(-1)^{n} * \bruch{1}{n} * ( \bruch{1}{3} + \bruch{1}{n})^{n}\right|}\right)[/mm]

Nun kannst du umformen: [mm] (-1)^{n} [/mm] ist entweder 1 oder -1, wenn man allerdings den Betrag darauf anwendet, wird es immer 1:

$= [mm] \lim_{n\to\infty}\left(\wurzel[n]{\left|\bruch{1}{n}\right| * \left|( \bruch{1}{3} + \bruch{1}{n})^{n}\right|}\right)$ [/mm]

Die restlichen Beträge fallen jetzt einfach deswegen weg, weil sowieso alles positiv ist. Nun kannst du auch die Wurzel auseinander ziehen:

$= [mm] \lim_{n\to\infty}\left(\wurzel[n]{\bruch{1}{n}} * \wurzel[n]{\left( \bruch{1}{3} + \bruch{1}{n}\right)^{n}}\right)$ [/mm]

$= [mm] \lim_{n\to\infty}\left(\bruch{1}{\wurzel[n]{n}} * \left( \bruch{1}{3} + \bruch{1}{n}\right)\right)$ [/mm]

So, nun bist du dran. Du weißt, dass [mm] $\lim_{n\to\infty}\sqrt[n]{n} [/mm] = 1$ als Tipp in deiner Aufgabenstellung, und  [mm] $\left( \bruch{1}{3} + \bruch{1}{n}\right)$ [/mm] konvergiert gegen ..., also darfst du die Grenzwertsätze anwenden.

Gegen was konvergiert also der gesamte Term?

Da das dann echt kleiner als 1 ist, hast du die absolute Konvergenz der Reihe mit dem Wurzelkriterium gezeigt.

Grüße,
Stefan

Bezug
                
Bezug
Konvergenzkriterien: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:49 Do 10.12.2009
Autor: MatheMaexchen

ah ok, ersteinmal vielen dank für die schnelle antwort.
ich bin dann jetzt auf den grenzwert [mm] \bruch{1}{3} [/mm] gekommen, was ja auch möglich ist (da größer als 0 und kleiner als 1).
also nochmal vielen dank!
liebe grüße
MatheMäxchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]