matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKonvergenzbeweis einer Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Konvergenzbeweis einer Reihe
Konvergenzbeweis einer Reihe < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzbeweis einer Reihe: Frage mit Lösungsidee
Status: (Frage) beantwortet Status 
Datum: 21:13 Mi 15.12.2004
Autor: T000B

Hi! Ich hab da mal nen Problem mit ner Hausaufgabe, wobei ich allerdings glaube eine Lösung gefunden zu haben. Nur bin ich mir unsicher ob die formulierung und die logischen Schlüssel so in Ordnung sind.

Seien [mm] \{w_{n}\}_{n\in\IN} \subset \IC [/mm]  und [mm] \{z_{n}\}_{n\in\IN}\subset \IC [/mm]  Folgen mit [mm] \summe_{n=1}^{ \infty}|w_{n}|^{2}< +\infty [/mm]  und [mm] \summe_{n=1}^{ \infty}|z_{n}|^{2}< +\infty [/mm] . Zeigen Sie, dass dann auch die Reihe [mm] \summe_{n=1}^{ \infty}w_{n}\*\overline{z}_{n} [/mm] konvergiert!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Meine Lösungsidee sieht also wie folgt aus:

da ja für komplexe Zahlen die Ungleichung von CAUCHY-SCHWARZ | [mm] \summe_{n=1}^{ m}w_{n}\*\overline{z}_{n}|^{2} \le(\summe_{n=1}^{ m}|w_{n}|^{2})*(\summe_{n=1}^{ m}|z_{n}|^{2}) [/mm] und für [mm] \alpha=\summe_{n=1}^{\infty}|w_{n}|^{2} [/mm] und [mm] \beta=\summe_{n=1}^{ m}|z_{n}|^{2} [/mm] die Abschätzung  [mm] \alpha*\beta<+\infty [/mm] gilt, folgt daraus [mm] |\summe_{n=1}^{\infty}w_{n}\*\overline{z}_{n}|^{2} \le\alpha*\beta<+\infty [/mm]

Und da nur das Produkt zweier konvergenter Reihen wieder eine konvergente Reihe ergibt folgt [mm] \summe_{n=1}^{\infty}w_{n}\*\overline{z}_{n}<+\infty [/mm]

Ist das so in Ordnung oder hab ich vielleicht irgendwas grundlegendes nicht beachtet??

MfG
T000B
  



        
Bezug
Konvergenzbeweis einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 Mi 15.12.2004
Autor: Marcel

Hallo T000B!

Also, die Idee müßte stimmen. [ok]
Aber da gibt es Kleinigkeiten zu korrigieren/ergänzen:

> Hi! Ich hab da mal nen Problem mit ner Hausaufgabe, wobei
> ich allerdings glaube eine Lösung gefunden zu haben. Nur
> bin ich mir unsicher ob die formulierung und die logischen
> Schlüssel so in Ordnung sind.
>  
> Seien [mm]\{w_{n}\}_{n\in\IN} \subset \IC[/mm]  und
> [mm]\{z_{n}\}_{n\in\IN}\subset \IC[/mm]  Folgen mit [mm]\summe_{n=1}^{ \infty}|w_{n}|^{2}< +\infty[/mm]
>  und [mm]\summe_{n=1}^{ \infty}|z_{n}|^{2}< +\infty[/mm] . Zeigen
> Sie, dass dann auch die Reihe [mm]\summe_{n=1}^{ \infty}w_{n}\*\overline{z}_{n}[/mm]
> konvergiert!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  Meine Lösungsidee sieht also wie folgt aus:
>  
> da ja für komplexe Zahlen die Ungleichung von
> CAUCHY-SCHWARZ | [mm]\summe_{n=1}^{ m}w_{n}\*\overline{z}_{n}|^{2} \le(\summe_{n=1}^{ m}|w_{n}|^{2})*(\summe_{n=1}^{ m}|z_{n}|^{2})[/mm]

Die lautet hier dann eigentlich:
[mm] $(\star)$[/mm]  [mm]\left(\summe_{n=1}^{ m}|w_{n}\*\overline{z}_{n}|\right)^{2} \le \left(\summe_{n=1}^{ m}|w_{n}|^{2}\right)*\left(\summe_{n=1}^{ m}|\overline{z_{n}}|^{2}\right)[/mm] (ich kenne sie zumindest so, und das ist eine feinere Abschätzung als deine!), wobei man das [mm] $\overline{z_n}$ [/mm] natürlich durch [mm] $z_n$ [/mm] ersetzen darf, da [mm] $|z_n|=|\overline{z_n}|$. [/mm]  

> und für [mm]\alpha=\summe_{n=1}^{\infty}|w_{n}|^{2}[/mm] und
> [mm]\beta=\summe_{n=1}^{ m}|z_{n}|^{2}[/mm] die Abschätzung  
> [mm]\alpha*\beta<+\infty[/mm] gilt, folgt daraus
> [mm]|\summe_{n=1}^{\infty}w_{n}\*\overline{z}_{n}|^{2} \le\alpha*\beta<+\infty [/mm]

Okay, aber präziser:
Zunächst hätte ich geschrieben:
Wegen $0 [mm] \le \alpha [/mm] < [mm] \infty$ [/mm] und $0 [mm] \le \beta [/mm] < [mm] \infty$ [/mm]
[mm] $\Rightarrow$ [/mm] $0 [mm] \le \alpha \beta [/mm] < [mm] \infty$. [/mm]
Weiter folgt damit:
[mm]\left(\summe_{n=1}^{ m}|w_{n}\*\overline{z}_{n}|\right)^{2} \le(\summe_{n=1}^{ m}|w_{n}|^{2})*(\summe_{n=1}^{ m}|z_{n}|^{2})[/mm]
[mm] $\Rightarrow$ [/mm]
[mm]\summe_{n=1}^{ \infty}|w_{n}\*\overline{z}_{n}| \le \wurzel{\underbrace{\alpha \beta}_{beachte:\; \alpha \beta \ge 0}} \le \alpha \beta < \infty[/mm]

> Und da nur das Produkt zweier konvergenter Reihen wieder
> eine konvergente Reihe ergibt folgt
> [mm]\summe_{n=1}^{\infty}w_{n}\*\overline{z}_{n}<+\infty[/mm]

  
Hm, du willst wohl mit dem/einem Satz über das Cauchy-Produkt argumentieren? Da verstehe ich jetzt nicht, worauf du hinaus willst.

Ich würde so argumentieren:
Wegen [mm]\summe_{n=1}^{ \infty}|w_{n}\*\overline{z}_{n}| \le \wurzel{\alpha \beta} \le \alpha \beta < \infty[/mm]
[mm] $\Rightarrow$ [/mm]
[mm]\summe_{n=1}^{ \infty}|w_{n}\*\overline{z}_{n}|[/mm] konvergiert (da die Folge der Teilsummen beschränkt ist).
Das aber wiederum heißt:
[mm]\summe_{n=1}^{ \infty}w_{n}\*\overline{z}_{n}[/mm] ist absolut konvergent und damit insbesondere konvergent.

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]