matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzbereich ermitteln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenzbereich ermitteln
Konvergenzbereich ermitteln < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzbereich ermitteln: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:20 Mo 27.07.2015
Autor: jengo32

Aufgabe
Ermitteln Sie den Konvergenzbereich der Potenzreihe. Welce Funktion stellt diese Potenzreihe im Konvergenzbereich dar( Hinweis: Summe der geometrischen Reihe)?:

[mm] 1+\bruch{1}{2}x [/mm] + [mm] \bruch{1}{4}x^2 [/mm] + [mm] \bruch{1}{8}x^3+... [/mm]

Grüße,

dies ist meine erste Aufgabe zu dem Thema KonvergenzBEREICH.

Ich versuch mich einfach mal und bitte um Korrektur:

Zuerst das Bildungsgesetz:

[mm] \summe_{n=1}^{\infty} \bruch{1}{2^{n-1}} *x^{n-1} [/mm]

Jetzt würde ich das Quotientenkriterium auf [mm] \bruch{1}{2^{n-1}} [/mm] anwenden und würde [mm] q=\bruch{1}{2} [/mm] erhalten. (da 0,5 < 1 konvergiert die Reihe)

Wenn ich das richtig verstanden habe ist der Radius [mm] r=\bruch{1}{q} [/mm] und somit ist r=2

Um den Konvergenzbereich zu berechnen benötige ich einen Entwicklungspunkt [mm] x_0. [/mm] Den kann ich bei [mm] x^{n-1} [/mm] ablesen.

[mm] x_0=0 [/mm]

Nun muss ich [mm] (x_0 [/mm] - r) und [mm] (x_0 [/mm] + r) berechnen.

Somit ist der Konvergenzbereich von -2 bis +2

Stimmt das bis hierhin ?

LG Jengo

        
Bezug
Konvergenzbereich ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 01:28 Di 28.07.2015
Autor: leduart

Hallo
wenn du etwas geschickter q=(1/2*x) geschrieben haettest koenntest du die geometrische Reihe erkennen, damit auch deren Summe also f(x) und den Konvergenzradius.
schlecht war vorallem die Summe mit n=1 statt n=0 anzufangen.Den K, und damit den Konvergenzradius hast du richtig und damit den Konvergenzbereich
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]