matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesKonvergenzberechunung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - Konvergenzberechunung
Konvergenzberechunung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzberechunung: Frage
Status: (Frage) beantwortet Status 
Datum: 15:44 So 20.02.2005
Autor: Skydiver

Hallo.

Ich habe ein kleines Problem bei einer Konvergenzberechnung:
zeigen sie die Konvergenz folgender uneigentlicher Integral:

[mm] \int_{1}^{\infty} e^{-x^2}*\cosh x\, [/mm] dx
[mm] \int_{-1}^{1} [/mm] -2 [mm] \cos [/mm] x [mm] \sin x^2 [/mm] / [mm] x^2\, [/mm] dx

Also ich denke, dass ich das durch

[mm] \lim_{x \to \infty}x^a [/mm] * f(x) = A

berechnen muss und je nach dem Wert von a ist das Integral dann konvergent oder divergent; jedoch komme ich dabei auf keine Lösung, da ich beim zweiten für: a > 0 : 0  
                                  a = 0 : -2
                                  a < 0 : [mm] -\infty [/mm]
erhalte, und dadurch nicht auf Konvergenz bzw. Divergenz schließen kann.
Beim ersten schaffe ich es nicht einmal durch entsprechende Umformungen auf ein Ergebnis der Grenzwertbeziehung zu kommen.
Ich hoffe jemand hat einen kleinen Tip für mich.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Konvergenzberechunung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 So 20.02.2005
Autor: andreas

hi

also die regel, die du vorschlägst ist mir nicht ganz klar. es wäre nett, wenn du die nochmal etwas genauer erläutern könntest. ansonsten hätte ich folgenden vorschlag: beim ersten integral kannst du den [mm] $\cosh [/mm] x = [mm] \frac{\textrm{e}^x + \textrm{e}^{-x}}{2}$ [/mm] ersetzen, dann erhälst du

[m] \int_1^\infty \textrm{e}^{-x^2} \cosh x \, \textrm{d}x = \int_1^\infty \textrm{e}^{-x^2} \frac{\textrm{e}^x + \textrm{e}^{-x}}{2} \, \textrm{d}x = \int_1^\infty \left( \frac{\textrm{e}^{-x^2 + x}}{2} + \frac{\textrm{e}^{-x^2 - x}}{2} \right) \, \textrm{d}x [/m]

nun kannst du zeigen, dass das integral über jeden summanden konvergiert und daraus folgern, dass das von dir betrachtete integral konvergiert.

z.b. gilt für $x [mm] \geq [/mm] 1$, dass [mm] $-x^2 [/mm] - x [mm] \leq [/mm] -2x$ und [mm] $-x^2 [/mm] + x [mm] \leq [/mm] -x + 1$ (sofern ich mich nicht verrechnet habe), also (wegen der positivität und der monotonie der [mm] $\textrm{e}$-funktion): [/mm]

[m] 0 \leq \int_1^\infty \frac{\textrm{e}^{-x^2 + x} }{2} \, \textrm{d}x \leq \int_1^\infty \textrm{e}^{-x+1} \, \textrm{d}x [/m] und [m] 0 \leq \int_1^\infty \frac{ \textrm{e}^{-x^2 - x}}{2} \, \textrm{d}x \leq \int_1^\infty \textrm{e}^{-x} \, \textrm{d}x [/m].



bei dem zweiten integral würde ich zeigen, dass die funktion in $x=0$ stetig ergänzbar ist, woraus direkt die konvergenz des integrals folgt (tipp: betrachte [m] \lim_{x \to 0} \frac{\sin x^2}{x^2} [/m] - mit de l'hôspital oder taylor-entwicklung).


probiere mal, ob du damit weiterkommst, sonst melde dich einfach nochmal.


grüße
andreas

Bezug
                
Bezug
Konvergenzberechunung: Anwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:31 So 20.02.2005
Autor: Skydiver

Das von mir vorgeschlagenen Lösungsverfahren basiert auf dem Wachstumsvergleich mit der Potenzfunktion 1 / [mm] (x-a)^b, [/mm] die am linken Intervallende (a) dasselbe Verhalten aufweist, wie die zu untersuchende Funktion. Von dieser Potenzfunktion weiß man, dass das Integral für b < 1 konvergiert und für b >= 1 divergiert;
ist nun f(x) <= [mm] C/(x-a)^b [/mm] --> dass auch f(x) konvergiert und dass ist dann der Fall wenn [mm] limes_{x \to 0}f(x) [/mm] * [mm] (x-a)^b [/mm] = C ist;
--> exisitert dieser Grenzwert für b < 1 --> Konvergenz
      existiert er für b >= 1 --> Divergenz;

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]