matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteKonvergenzberechnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Grenzwerte" - Konvergenzberechnung
Konvergenzberechnung < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:58 Sa 12.12.2009
Autor: dxlegends

Aufgabe
Im x y — Achsenkreuz geht ein Streckenzug vom Punkt P( 1; 1) aus. Die erste Strecke verläuft von P aus um 4 LE parallel zur y — Achse nach oben. Von dem erreichten Punkt geht eine zweite Strecke parallel zur x — Achse um 2 LE nach rechts, von dort eine dritte Strecke um 1 LE parallel zur y — Achse nach unten, dann weiter um 0,5 LE parallel zur x — Achse nach links, dann um 0,25 LE nach oben usw.
Auf welchen Punkt S zu konvergiert der Streckenzug? Gib nach entsprechender Rechnung die Koordinaten von S an!

Hmm, manchmal weiß ich nicht, ob ich einfach nur selten dämlich bin oder nur ein Brett vorm Kopf habe...

Ich habe zwar versucht, mir diese Aufgabe in ein KO-System einzuzeichnen, erinnert mich in diesem Fall sehr an Snake, aber wenn ich ehrlich bin, ich habe keine Ahnung, was ich hier tun soll.
Ich peile bei dieser Aufgabe nichteinmal, was da von mir gewollt wird...
Zwar erkenne ich, dass sich die Strecken immer halbieren, wodurch sich ja eine geometrische Folge ergibt, aber ich verstehe nicht, worauf das hinauslaufen soll, was ich eigentlich berechnen soll...
Vielen Dank für die Hilfe, die ich nicht nur bei dieser Aufgabe hier im Forum erhalte :)
MLG
Legends

        
Bezug
Konvergenzberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 Sa 12.12.2009
Autor: Karl_Pech

Hallo dxlegends,


Ich bin mir bei meiner Lösung der Aufgabe selbst nicht sicher. Wir haben also die vier Himmelsrichtungen "Norden", "Osten", "Süden", "Westen" gegeben: [mm]a:=(0,1);\ b:=(1,0);\ c:=(0,-1);\ d:=(-1,0)[/mm]. Ferner fällt die Länge, die wir gehen, entlang einer 2er-Potenz-Folge. Also ungefähr so, würde ich sagen:


[mm]a\cdot{}2^2+b\cdot{}2^1+c\cdot{}2^0+d\cdot{}2^{-1}+a\cdot{}2^{-2}+\dotsm=:(\dagger)[/mm]


Lösen wir uns einmal davon, daß [mm]a,b,c,d\![/mm] Koordinaten sind und stellen uns vor, dies wären "zahlenähnliche Objekte". Z.B. gilt im Dezimalsystem [mm]123.23 = 1\cdot{}10^2 + 2\cdot{}10^1 + 3\cdot{}10^0 + 2\cdot{}10^{-1} + 3\cdot{}10^{-2}[/mm]. Ähnlich dazu gilt dann bei unserer Aufgabe: [mm](\dagger)=\operatorname{abc}\!.\!\operatorname{d}\!\overline{\operatorname{abcd}}=2^3\cdot{}0.\overline{\operatorname{abcd}}=\left(\dagger_2\right)[/mm].

Jetzt siehe dir nochmal diese Diskussion von dir an. Dort habe ich einen Verweis zu einer anderen Diskussion erwähnt. Die dortige allgemeine Formel müßte man auch hier leicht abgewandelt benutzen können ohne die ganze Herleitung nochmal machen zu müssen:


[mm]\left(\dagger_2\right)=2^3\cdot{}\frac{\operatorname{abcd}}{2^4}\cdot{}\frac{2^4}{2^4-1}=2^3\cdot{}\frac{a\cdot{}2^3+b\cdot{}2^2+c\cdot{}2^1+d\cdot{}2^0}{15}=\frac{(0,1)\cdot{}2^6+(1,0)\cdot{}2^5+(0,-1)\cdot{}2^4+(-1,0)\cdot{}2^3}{15}=(1.6,3.2)[/mm]


Und damit gilt: [mm](1,1)+(1.6,3.2)=(2.6,4.2)\![/mm].


Machen wir mal eine "empirische Probe":


> Im x y — Achsenkreuz geht ein Streckenzug vom Punkt P( 1;
> 1) aus.


Also: [mm](1,1)+\texttt{irgendwas}[/mm].


> Die erste Strecke verläuft von P aus um 4 LE
> parallel zur y — Achse nach oben.


Also: [mm](1,1)+(0,4)=(1,5)\![/mm].


> Von dem erreichten Punkt geht eine zweite Strecke
> parallel zur x — Achse um
> 2 LE nach rechts


[mm](1,1)+(0,4)+(2,0)=(3,5)\![/mm].


> von dort eine dritte Strecke um 1 LE parallel zur y —
> Achse nach unten


[mm](1,1)+(0,4)+(2,0)+(0,-1)=(3,4)\![/mm].


> dann weiter um 0,5 LE parallel zur x — Achse nach links


[mm](1,1)+(0,4)+(2,0)+(0,-1)+(-0.5,0)=(2.5,4)\![/mm].


> dann um 0,25 LE nach oben


[mm](1,1)+(0,4)+(2,0)+(0,-1)+(-0.5,0)+(0,0.25)=(2.5,4.25)\![/mm].


Scheint als wären meine Überlegungen gar nicht so falsch... :-)



Viele Grüße
Karl




Bezug
                
Bezug
Konvergenzberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 So 13.12.2009
Autor: dxlegends

Ja, aber was will die Aufgabe jetzt von mir?
Welcher Punkt S ist gesucht?
Wie errechne ich den in diesem Fall??

Bezug
                        
Bezug
Konvergenzberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 So 13.12.2009
Autor: VornameName

Hallo,

> Ja, aber was will die Aufgabe jetzt von mir?
>  Welcher Punkt S ist gesucht?

Ich sehe, er hat einen Punkt [mm]S:=(2.6,4.2)\![/mm] berechnet. Außerdem scheint auch seine Beispielrechnung am Schluß zu diesem Punkt zu konvergieren. Die Beispielrechnung ist dir doch klar, oder?

>  Wie errechne ich den in diesem Fall??

Hat er das nicht vorgerechnet? :) Ob seine Rumrechnerei stimmt, kann ich auch nicht sagen.

Gruß V.N.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]