Konvergenz zeigen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Moin,
ich hätte mal eine allgemeine Frage. Wenn man auf Konvergenz überprüft reicht es einfach nur die Hinreichende Bedingung zu zeigen oder muss man auch die notwendige Bedingung zeigen?
Konkret geht es um die folgende Aufgabe: Überprüfen Sie die Reihe [mm] \summe_{n=1}^{\infty} (\bruch{n}{2n+1})^{n} [/mm] auf Konvergenz.
Über das Wurzelkriterium erhält man [mm] \limes_{n\rightarrow\infty} \wurzel[n]{(\bruch{n}{2n+1})^{n}} [/mm] = [mm] \bruch{1}{2} [/mm]
Muss ich jetzt auch noch die notwendige Bedingung zeigen?
LG Rocky1994
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:22 Fr 04.08.2017 | Autor: | X3nion |
> Moin,
>
> ich hätte mal eine allgemeine Frage. Wenn man auf
> Konvergenz überprüft reicht es einfach nur die
> Hinreichende Bedingung zu zeigen oder muss man auch die
> notwendige Bedingung zeigen?
>
> Konkret geht es um die folgende Aufgabe: Überprüfen Sie
> die Reihe [mm]\summe_{n=1}^{\infty} (\bruch{n}{2n+1})^{n}[/mm] auf
> Konvergenz.
>
> Über das Wurzelkriterium erhält man
> [mm]\limes_{n\rightarrow\infty} \wurzel[n]{(\bruch{n}{2n+1})^{n}}[/mm]
> = [mm]\bruch{1}{2}[/mm]
>
> Muss ich jetzt auch noch die notwendige Bedingung zeigen?
>
> LG Rocky1994
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Hallo Rocky1994,
das Wurzelkriterium basiert auf einem Vergleich mit der geometrischen Reihe. Was den Vergleich angeht, so basiert dieser im Falle der Konvergenz auf dem Majorantenkriterium mit der geometrischen Reihe als konvergente Majorante.
Da das Majorantenkriterium wiederum auf Basis des Cauchy'schen Konvergenzkriteriums erfolgt, ist die notwendige Bedingung nicht extra zu prüfen, da diese im Falle der Erfüllung des Cauchy Kriteriums für Reihen automatisch erfüllt ist!
Viele Grüße,
X3nion
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:21 Fr 04.08.2017 | Autor: | fred97 |
> Moin,
>
> ich hätte mal eine allgemeine Frage. Wenn man auf
> Konvergenz überprüft reicht es einfach nur die
> Hinreichende Bedingung zu zeigen
.... die hinreichende Bedingung .... ? Gibts nur eine ?
> oder muss man auch die
> notwendige Bedingung zeigen?
Hmmm.... . Meinst Du damit, dass Du noch zeigen musst, dass die Reihenglieder eine Nullfolge bilden ?
Wenn ja, so lautet meine Antwort: nein, natürlich nicht !
Wenn Du mit einem blabla-blubber - Kriterium gezeigt hat, dass eine vorgelegte Reihe konvergiert, so folgt dann auch: die Reihenglieder bilden eine Nullfolge.
>
> Konkret geht es um die folgende Aufgabe: Überprüfen Sie
> die Reihe [mm]\summe_{n=1}^{\infty} (\bruch{n}{2n+1})^{n}[/mm] auf
> Konvergenz.
>
> Über das Wurzelkriterium erhält man
> [mm]\limes_{n\rightarrow\infty} \wurzel[n]{(\bruch{n}{2n+1})^{n}}[/mm]
> = [mm]\bruch{1}{2}[/mm]
>
> Muss ich jetzt auch noch die notwendige Bedingung zeigen?
Wie gesagt: nö.
Da [mm]\limes_{n\rightarrow\infty} \wurzel[n]{(\bruch{n}{2n+1})^{n}}<1[/mm] ist, folgt aus dem Wurzelkriterium (hier ist blabla-blubber = Wurzel) die konvergenz der Reihe [mm]\summe_{n=1}^{\infty} (\bruch{n}{2n+1})^{n}[/mm] und daraus dann [mm] (\bruch{n}{2n+1})^{n} \to [/mm] 0.
>
> LG Rocky1994
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:07 Sa 05.08.2017 | Autor: | Rocky1994 |
Vielen Dank!
|
|
|
|
|
> Moin,
>
> ich hätte mal eine allgemeine Frage. Wenn man auf
> Konvergenz überprüft reicht es einfach nur die
> Hinreichende Bedingung zu zeigen oder muss man auch die
> notwendige Bedingung zeigen?
Hallo,
mal ganz allgemein unabhängig von der betrachteten Situation:
H ist hinreichende Bedingung für die Aussage A bedeutet, dass wenn H erfüllt ist, auch A gelten muss, also [mm]H\Rightarrow A[/mm].
N ist eine notwendige Bedingung für A, wenn [mm]A\Rightarrow N[/mm].
Damit gilt in jedem Fall [mm]H\Rightarrow A\Rightarrow N[/mm], d.h. wenn eine hinreichende Bedingung erfüllt ist, muss eine notwendige Bedingung auf jeden Fall auch erfüllt sein und es wäre Blödsinn, dies gesondert nachzuprüfen.
>
> Konkret geht es um die folgende Aufgabe: Überprüfen Sie
> die Reihe [mm]\summe_{n=1}^{\infty} (\bruch{n}{2n+1})^{n}[/mm] auf
> Konvergenz.
>
> Über das Wurzelkriterium erhält man
> [mm]\limes_{n\rightarrow\infty} \wurzel[n]{(\bruch{n}{2n+1})^{n}}[/mm]
> = [mm]\bruch{1}{2}[/mm]
>
> Muss ich jetzt auch noch die notwendige Bedingung zeigen?
>
> LG Rocky1994
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|