matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische AnalysisKonvergenz zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "stochastische Analysis" - Konvergenz zeigen
Konvergenz zeigen < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 Fr 09.05.2014
Autor: Cyborg

Aufgabe
Sei [mm] \Omega [/mm] = [0,1] ein Grundraum, P das auf [0,1] eingeschränkte Lebesguemaß, d.h. P([a,b])=b-a für alle a [mm] \le [/mm] b [mm] \in \Omega. [/mm] Die Intervalle [mm] I_n [/mm] = [mm] [a_n, b_n] [/mm] seien rekursiv definiert durch:
[mm] a_1=0 [/mm]
[mm] b_n [/mm] = [mm] a_n [/mm] + [mm] \bruch{1}{n} [/mm]
[mm] a_{n+1} [/mm] = [mm] b_n [/mm]

Daraus konstruieren wir die Intervalle [mm] J_n:= I_n [/mm] mod1, womit gemeint ist, dass bei allen Elementen von [mm] I_n [/mm] nur die Nachkommastellen genommen werden und in [mm] J_n [/mm] getan. Also:
[mm] J_n:= [/mm] {x- [mm] \perp x\perp [/mm] |x [mm] \in I_n [/mm] } .

Die Folge von Zufallsvariablen [mm] X_n [/mm] ist definiert als
[mm] X_n [/mm] (w) = [mm] 1_{J_n}(w) [/mm]

(1=Indikatorfunktion)

a) Zeigen Sie, dass diese Folge in Wahrscheinlichkeit gegen 0 konvergiert
b) Zeigen Sie, dass sie nicht fastsicher konvergiert

Ich weiß leider gar nicht wie ich anfangen soll...
Kann mir jemand einen Tipp geben? Vielleicht eine Skizze wie das ganze überhaupt aussieht oder so?



        
Bezug
Konvergenz zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Sa 10.05.2014
Autor: Gonozal_IX

Hiho,

vergiss diese "mod" Geschichte mal, die stellt nur sicher, dass du nicht aus [0,1] herausläufst, sondern sobald du bspw. das Intervall [mm] $\left[1,1+\bruch{1}{n}\right]$ [/mm] stattdessen wieder an den Anfang springst und [mm] $\left[0,\bruch{1}{n}\right]$ [/mm] erhälst.

Anschaulich erhälst du also immer kleinere Intervalle, die von 0 nach 1 durch das Intervall [0,1] laufen.

Nun zum Problem: Du hast also Intervalle der Form [mm] $A_n [/mm] = [mm] \left[a_n,a_n +\bruch{1}{n}\right]$. [/mm]

1.) Was ist nun [mm] P(A_n) [/mm] und wogegen konvergieren folglich die Indikatorfunktionen davon?

2.) Nimm nun ein beliebiges [mm] $x\in [/mm] [0,1]$ und erinnere dich daran, dass die Intervalle immer durch [0,1] laufen (und damit an jedem x mal vorbeilaufen).

Damit gilt für jedes [mm] X_n(x) [/mm] was?

D.h. für [mm] $\limsup_{n\to\infty} X_n(x)$? [/mm] Und für [mm] $\liminf_{n\to\infty} X_n(x)$ [/mm]

Was folgt daraus für [mm] $\lim_{n\to\infty} X_n(x)$? [/mm]

Was kann [mm] X_n [/mm] also nicht sein?

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]