matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz von reihen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergenz von reihen
Konvergenz von reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von reihen: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 13:42 Mi 20.12.2006
Autor: CPH

Aufgabe
Seien [mm] \summe_{k} a_{k} [/mm] eine Reihe und [mm] (b_{k})_{k}eine [/mm] Beschränkte Folge.
Beweisen oder Wiederlegen (beispiel reicht zum wiederlegen) sie:

a) ist  [mm] \summe_{k} a_{k} [/mm]  absolut konvergent, dann auch  [mm] \summe_{k} a_{k} b_{k} [/mm]
b) Ist  [mm] \summe_{k} a_{k} [/mm]  konvergent, dann auch  [mm] \summe_{k} a_{k} b_{k} [/mm]  

ich habe nicht mal die leiseste Ahnung wie ich an diese Aufgabe rangehen soll!
Ein Tipp währe nicht schlecht ,  eine Musterlösung währe vielleicht sogar besser, aber nur wenn jeder "Denkschritt" ausreichend dokumentiert ist.

Vielen Dank im  Voraus!


Christoph

PS ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz von reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 Mi 20.12.2006
Autor: statler

Guten Tag Christoph!

> Seien [mm]\summe_{k} a_{k}[/mm] eine Reihe und [mm](b_{k})_{k}eine[/mm]
> Beschränkte Folge.
> Beweisen oder Wiederlegen (beispiel reicht zum wiederlegen)
> sie:
>  
> a) ist  [mm]\summe_{k} a_{k}[/mm]  absolut konvergent, dann auch  
> [mm]\summe_{k} a_{k} b_{k}[/mm]

'beschränkt' heißt doch hoffentlich 'nach beiden Seiten beschränkt',
also |[mm]b_{k}[/mm]| [mm] \le [/mm] S.
Aber damit kannst du die Summe der Beträge sofort abschätzen!

>  b) Ist  [mm]\summe_{k} a_{k}[/mm]  
> konvergent, dann auch  [mm]\summe_{k} a_{k} b_{k}[/mm]

Hier kannst du dir aus 1 - 1/2 + 1/3 - 1/4 +.... und der Folge 1, -1, 1, -1, ...
ein Gegenbeispiel zaubern.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Konvergenz von reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Mi 20.12.2006
Autor: CPH

Erst einmal vielen Dank für die tipps, das Beispiel konnte ich Konstruieren.

Ich verstehe nicht wie ich die Summe der Beträge abschätzen soll,
ich verstehe auch absolute Konvergenz nicht ganz, absolute Konvergenz heißt doch, dass [mm] \summe_{k} [/mm] | [mm] a_{k} [/mm] | konvergent ist, was dass aber jetzt konkret heißt weiß ich nicht, ich wieß nur dass aus dem Quotientenkriterium absolute Konvergenz folgt, aber ich wüsste nicht, wie ich das hierauf anwenden soll.

Vielleicht gibt es ja ein einfaches, dafür verständliches Beispiel?

Vielen Dank für ihre Mühe
Christoph

PS ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bezug
                        
Bezug
Konvergenz von reihen: einsetzen
Status: (Antwort) fertig Status 
Datum: 22:08 Mi 20.12.2006
Autor: Loddar

Hallo CPH!


Wenden wir einfach statler's Tipp mit [mm] $\red{\left|b_k\right| \ \le \ S}$ [/mm] an und setzen ein:

[mm] $\summe_{k=0}^{\infty}\left|a_k*b_k\right| [/mm] \ = \ [mm] \summe_{k=0}^{\infty}\left|a_k\right|*\red{\left|b_k\right|} [/mm] \ [mm] \red{\le} [/mm] \ [mm] \summe_{k=0}^{\infty}\left|a_k\right|*\red{S} [/mm] \ = \ [mm] S*\summe_{k=0}^{\infty}\left|a_k\right|$ [/mm]

Und da die Konvergenz von [mm] $\summe_{k=0}^{\infty}\left|a_k\right|$ [/mm] Voraussetzung war, ...


Gruß
Loddar


Bezug
                                
Bezug
Konvergenz von reihen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:43 Do 21.12.2006
Autor: CPH

Vielen Dank, jetzt hab ichs!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]