Konvergenz von Reihen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:23 Sa 19.02.2005 | Autor: | hanna |
Hallo!
Ich lerne gerade für meine AnaI/II Vordiplomsklausur und rechne dafür alte Klausuren durch.
Jetzt hänge ich an einer Aufgabe und habe schon gar keine Idee, wie ich anfangen soll.
Das Problem ist folgendes:
Untersuche die Reihe auf Konvergenz:
[mm] \summe_{n=1}^{ \infty} \ln(1+ \bruch{(-1)^n}{2n+1})[/mm]
(Hinweis: Verwende das Leibniz-Kriterium)
Um das Leibniz-Kriterium überhaupt anwenden zu können, müsste ich doch irgendwie die [mm](-1)^n[/mm] in der Reihe ausklammern, um auf die Form [mm] \summe_{n=1}^{\infty} (-1)^n a_{n}[/mm] zu kommen.
Dann würde ich testen, ob die Folge [mm](a_{n})_{n \in \IN}[/mm] eine relle, monoton fallende Nullfolge ist und damit hätte ich die Konvergenz der Reihe gezeigt.
Nur schaffe ich es überhaupt nicht, die Reihe [mm] \summe_{n=1}^{ \infty} \ln(1+ \bruch{(-1)^n}{2n+1})[/mm] irgendwie auf die Form [mm] \summe_{n=1}^{\infty} (-1)^n a_{n}[/mm] zu bringen.
Vielleicht weiß jemand von euch, wie man das macht und wäre so nett, mir dabei zu helfen
Ich verzweifle nämlich schon langsam an der Aufgabe...
Gruß,
Hanna
|
|
|
|
Versuch mal bevor du dich an die Anwendung eines Kreteriums wagst die Reihe zu zerlegen.
Hierbei sollten dir die Eigenschaften des ln helfen, die du in jedem Tafelwerk findest.
Hast du das erst mal gemacht ist es nicht weiter schwer.
Viel Spaß
NW
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 17:35 Sa 19.02.2005 | Autor: | hanna |
Hallo nebelwolf!
Danke, dass du geantwortet hast, aber mir ist das immer noch nicht klar
(sehr wahrscheinlich habe ich seit Tagen ein Brett, wenn nicht sogar einen ganzen Balken, vorm Kopf).
Ich schreibe jetzt mal auf, wie weit ich den Term in der Reihe zerlegen konnte:
[mm]\ln(1+\bruch{(-1)^n}{2n+1})=ln(2n+1+(-1)^n)-ln(2n+1)[/mm]
ich kenne laut Vorlesung nur die folgenden Eigenschaften des [mm]\ln[/mm]:
für [mm]x,y \in \IR_{+} \setminus 0[/mm] gilt
[mm]\ln(xy)=\ln(x)+\ln(y)[/mm] und damit dann [mm]\ln(\bruch{x}{y})=\ln(x)-\ln(y)[/mm]
und damit komme ich nicht wirklich weiter.
Kannst du mir nicht vielleicht verraten, wie du den Term umformst?
Es ist nicht so, als dass ich mir keine Gedanken um die Aufgabe gemacht habe.
Ich habe auch schon mit Kommilitonen zusammen überlegt, aber irgendwie schafft niemand diese Aufgabe.
Gruß,
Hanna
|
|
|
|
|
Bei dem Folgenden bin ich mir nicht ganz sicher aber du kannst es ja mal versuchen.
- die 1 erweitern und auf einen gemeinsamen Bruch schreiben
- dann in die Summen [mm] ln((2n+1)+(-1)^n) [/mm] und ln(2n+1) zerlegen, wobei die zweite eine Partialsumme von der Summe ln(n) ist
- die erst noch weiter zwerlegen, und schon bleibt nicht mehr viel über
Ich hoffe du kannst damit was anfangen.
zusatz: wenn du die erste Summe unterteilst dann bekommst du so was wie [mm] \summe_{i=1}^{n:2} [/mm] 2ln(2n)
|
|
|
|
|
Hallo, hanna
Es gilt $0 < 1 + [mm] \frac{(-1)^n}{2n+1} [/mm] < [mm] e^1$
[/mm]
für
$n [mm] \rightarrow \infty$ [/mm] wird der Summand zu [mm] $\ln [/mm] 1$,
also 0, und sein Vorzeichen wechselt;
ist
also nur noch zu Zeigen daß der Betrag des Summanden
ab, z.B. n=2, streng mononton abnimmt; da der ln
streng monoton ist genügt es dazu zu zeigen
daß
$1 + [mm] \frac{1}{4m+1} [/mm] > (1 - [mm] \frac{1}{4m+3})^{-1}$
[/mm]
(für $0 < x < 1$ ist $| [mm] \ln [/mm] x | = [mm] \ln(1/x)$)
[/mm]
|
|
|
|