Konvergenz von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 16:09 Fr 11.11.2005 | Autor: | blitzopfer |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich habe eine absolut konvergente Reihe [mm] \summe_{k=1}^{\infty}a_{k} [/mm] und eine Nullfolge [mm] \varepsilon_{n} [/mm] und soll zeigen, dass
[mm] c_{n} [/mm] = [mm] a_{n}\varepsilon_{1}+a_{n-1}\varepsilon_{2}+...+a_{1}\varepsilon_{n} \rightarrow [/mm] 0 für n [mm] \rightarrow \infty
[/mm]
Mein Lösungsansatz:
nach dem reihenkriterium von folgen gilt:
[mm] \summe_{n=1}^{\infty} c_{n} [/mm] ist konvergent [mm] \Rightarrow c_{n} \rightarrow [/mm] 0.
bleibt also zu zeigen, dass [mm] \summe_{n=1}^{\infty} c_{n} [/mm] konvergiert.
dies ist genau das cauchyprodukt der reihen [mm] \summe_{k=1}^{\infty}a_{k} [/mm] und [mm] \summe_{j}^{\infty}\varepsilon_{j}.
[/mm]
meine erste idee war nun nach dem satz von mertens vorzugehen, da man ja weiss, dass [mm] \summe_{k=1}^{\infty}a_{k} [/mm] absolut konvergiert. bliebe zu zeigen, dass [mm] \summe_{j}^{\infty}\varepsilon_{j} [/mm] konvergiert. das funktioniert aber nicht, da es sich um die reihe einer nullfolge handelt und diese nicht zwingend konvergieren muss.
also muss ich wohl anders zeigen, dass [mm] \summe_{n=1}^{\infty} c_{n} [/mm] konvergiert. ich habe mir dazu sämtliche kritierien angeguckt und das umschreiben der reihe ausprobiert aber ich hab absolut nichts gefunden, was mir hilft.
kann mir jemand helfen? danke!
|
|
|