matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz von Potenzreihen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergenz von Potenzreihen
Konvergenz von Potenzreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Do 16.12.2004
Autor: Xenia

HI,

hab foldende Potenzreihen zu untersuchen, für welche x aus R konvergieren die und für welche nicht.

a) [mm] \summe_{n=1}^{ \infty}(-1)^{n-1}\bruch{ x^{n}}{n}[/mm]

b) [mm] \summe_{n=0}^{\infty}x^{n^{2}} [/mm]

c) [mm] \summe_{n=1}^{\infty}\vektor{2n \\ n}x^{n}[/mm]

Welche Kriterien soll ich hier anwenden? Bitte ein paar Tips!

Vielen Dank!!!


        
Bezug
Konvergenz von Potenzreihen: Tipps
Status: (Antwort) fertig Status 
Datum: 22:45 Do 16.12.2004
Autor: sirprize

Hi Xenia!

zu A) $ [mm] \summe_{n=1}^{ \infty}(-1)^{n-1}\bruch{ x^{n}}{n} [/mm] $ ist doch nichts anderes als $ [mm] \summe_{n=1}^{ \infty}\bruch{(-1)^{n-1}}{n} x^{n} [/mm] $.
Dann einfach die bekannten Kriterien anwenden (z.B. was ist wohl $ [mm] \limsup_{n\rightarrow\infty}\wurzel[n]{\bruch{(-1)^{n-1}}{n}} [/mm] $ ?)

zu B) Substitution (z.B. $ u = [mm] n^{2} [/mm] $), die Summe geht sowieso bis $ [mm] \infty [/mm] $
Natürlich nicht die Rücksubstitution vergessen.

zu C) Sobald ein Binomialkoeffizient auftaucht, würde ich grundsätz vom Wurzelkriterium abraten. Aber dafür gibt was viel geschickteres mit Quotienten :-)

Und noch ein Zusatztipp: Wenn du z.B. noch dazugeschrieben hättest, was du dir bislang dazu gedacht hast, dann hätte ich viel besser auf deine Fragen eingehen können. Ich weiss ja nicht, welche Kriterien du kennst und wieviel du bisher mit Potenzreihen gemacht hast :-)

Gruss,
Michael

Bezug
        
Bezug
Konvergenz von Potenzreihen: tipp zu b)
Status: (Antwort) fertig Status 
Datum: 23:20 Do 16.12.2004
Autor: Edi1982

Zu dem oben kommt noch:
[mm] \summe_{n=0}^{\infty}x^{n^{2}} [/mm] ist immer positiv.
egal ob x pos. oder neg.,
da [mm] n^{2} [/mm]

Viele Grüße vom Prof. Freitag :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]