matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz von Folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenz von Folgen
Konvergenz von Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 Mi 29.11.2006
Autor: cpuberti

Wie zeige ich dass
[mm]a_{n+1}=\bruch{1}{2}*(a_n+\bruch{a}{a_n})[/mm]
nach Wurzel a konvergiert?
Für einen Ansatz wäre ich sehr Dankbar.
(Monotonie und Beschränktheit zeigen, habe ich nicht hinbekommen!)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Mi 29.11.2006
Autor: angela.h.b.


> Wie zeige ich dass
>  [mm]a_{n+1}=\bruch{1}{2}*(a_n+\bruch{a}{a_n})[/mm]
>  nach Wurzel a konvergiert?
>  Für einen Ansatz wäre ich sehr Dankbar.
>  (Monotonie und Beschränktheit zeigen, habe ich nicht
> hinbekommen!)

Hallo,

hier

wurde diese Frage bereits bearbeitet.

Gruß v. Angela

Bezug
                
Bezug
Konvergenz von Folgen: nicht monoton
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:27 Mi 29.11.2006
Autor: leduart

Hallo angela und
leider ist der weg in dem anderen post falsch.
die folge ist alternierend, also ne  Intervallschachtelung fuer [mm] \wurzel{a}. [/mm]
man kann leicht zeigen, wenn [mm] a_n<\wurzel{a} [/mm] folgt [mm] a_{n+1}>a_n, [/mm] wenn [mm] a_n>\wurzel{a} [/mm] folgt [mm] a_{n+1} Wenn man die Intervallschachtelung gezeigt hat ist man fertig.
Am besten man probiert ein paar Schritte fuer a=2 mit dem TR aus, um zu sehen, wie es laeuft!
anfangswert ist egal, wenn er zu schlecht ist, dauert es halt laenger. Nimm z.bsp [mm] a_0=1 [/mm] oder 2.
Gruss leduart

Bezug
                        
Bezug
Konvergenz von Folgen: doch monoton
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:13 Mi 29.11.2006
Autor: angela.h.b.


> Hallo angela und
>  leider ist der weg in dem anderen post falsch.
>  die folge ist alternierend, also ne  Intervallschachtelung
> fuer [mm]\wurzel{a}.[/mm]
>  man kann leicht zeigen, wenn [mm]a_n<\wurzel{a}[/mm] folgt
> [mm]a_{n+1}>a_n,[/mm] wenn [mm]a_n>\wurzel{a}[/mm] folgt [mm]a_{n+1}
>  Wenn man die Intervallschachtelung gezeigt hat ist man
> fertig.
>  Am besten man probiert ein paar Schritte fuer a=2 mit dem
> TR aus, um zu sehen, wie es laeuft!
>  anfangswert ist egal, wenn er zu schlecht ist, dauert es
> halt laenger. Nimm z.bsp [mm]a_0=1[/mm] oder 2.
>  Gruss leduart


Hallo,

ich bin nach wie vor davon überzeugt, daß a>0 und und [mm] a_0>0 [/mm] vorausgesetzt, die Folge [mm] \bruch{1}{2} (a_{n}+\bruch{a}{a_{n}}) [/mm]
monoton fallend ist.

Es ist

1. [mm] a_n>0 [/mm]
2. [mm] a_n^2-a \ge [/mm] 0.

Du schreibst:

>  man kann leicht zeigen, wenn [mm]a_n<\wurzel{a}[/mm] folgt
> [mm]a_{n+1}>a_n,[/mm] wenn [mm]a_n>\wurzel{a}[/mm] folgt [mm]a_{n+1}

Es ist ja aber immer [mm] a_n [/mm]   [mm] \ge [/mm] [mm] \wurzel{a}, [/mm] denn [mm] a_n>0. [/mm]

Mit 1. und 2. erhält man

3. [mm] a_n-a_{n-1} \ge [/mm] 0, also ist [mm] (a_n) [/mm] monoton fallend und nach unten durch [mm] \wurzel{a} [/mm] beschränkt.

Im übrigen sagt mein Taschenrechner das auch.

Gruß v. Angela




Bezug
                
Bezug
Konvergenz von Folgen: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 23:24 Mi 29.11.2006
Autor: leduart

Hallo
Ich hab nen Denkfehler gemacht! Angela hat recht, bis moeglicherweise vom ersten zum 2. Schritt ist die Folge monoton!
Danke angela und sorry
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]