matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz von Folge  - Aufg
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergenz von Folge - Aufg
Konvergenz von Folge - Aufg < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Folge - Aufg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:05 Di 30.12.2008
Autor: Englein89

Aufgabe
[mm] \wurzel {n^2 + n} [/mm] -n

Hallo,

ich soll die Konvergenz der folgenden Folge bestimmen, bin jedoch etwas ratlos, zumal ich hier etwas von der Form unendlich - unendlich habe und demnach umformen muss.

Wir haben folgende Lösung gefunden: [mm] \bruch {\wurzel {n^2 + n} -n}{1} [/mm] * [mm] \bruch {\wurzel {n^2 + n} +n}{\wurzel {n^2 + n} +n} [/mm]

Aber diesen Schritt verstehe ich nicht. Kann jemand bitte helfen? Wie komme ich dann als nächstes auf [mm] \bruch {\wurzel {n^2 + n}^2 -n^2}{\wurzel {n^2 + n} +n}? [/mm]

Danke!


        
Bezug
Konvergenz von Folge - Aufg: 3. binomische Formel
Status: (Antwort) fertig Status 
Datum: 14:07 Di 30.12.2008
Autor: Loddar

Hallo Englein!


Im Zähler wird nach dem Erweitern die 3. binomische Formel $(a+b)*(a-b) \ = \ [mm] a^2-b^2$ [/mm] angewandt.


Gruß
Loddar


Bezug
        
Bezug
Konvergenz von Folge - Aufg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:48 Mi 31.12.2008
Autor: Englein89

Hallo,
danke für den Tipp, aber: Ich sehe nicht, was hier das a und was das b ist und wieso man darauf 2 Brüche machen kann, die trotzdem den gleichen Wert haben!?

Bezug
                
Bezug
Konvergenz von Folge - Aufg: Antwort
Status: (Antwort) fertig Status 
Datum: 09:59 Mi 31.12.2008
Autor: angela.h.b.


> Hallo,
>  danke für den Tipp, aber: Ich sehe nicht, was hier das a
> und was das b ist und wieso man darauf 2 Brüche machen
> kann, die trotzdem den gleichen Wert haben!?

Hallo,

es ist a=$ [mm] \wurzel {n^2 + n} [/mm] $ und b=n, erweitert wurde mit a+b.

Mit a+b erweitern bedeutet Multiplikation mit [mm] \bruch{a+b}{a+b}=1, [/mm] was die Erklärung dafür ist, daß sich durchs Erweitern der Wert nicht ändert.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]