matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz von Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Konvergenz von Folge
Konvergenz von Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Folge: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:29 Do 03.12.2009
Autor: erik87

Aufgabe
Sei [mm] a_n [/mm] = [mm] (\alpha [/mm] + [mm] \frac{1}{n^2} )^n [/mm] - [mm] \beta^n [/mm]
(a) Für welche [mm] \alpha ,\beta [/mm] konvergiert die Folge?
(b) Für welche [mm] \alpha ,\beta [/mm] hat die Folge Häufungspunkte?

Also, ich habe mir überlegt das wenn [mm] |\alpha| [/mm] und [mm] |\beta| [/mm] jeweils kleiner gleich 1 sind und [mm] \alpha\not=-1, [/mm] wenn [mm] \beta\not=-1, [/mm] dann konvergiert die Folge auf jeden Fall, da ja [mm] \frac{1}{n^2} [/mm] sowieso gegen 0 geht und somit für große n unerheblich ist. Außerdem konvergiert die Folge auch für  [mm] \alpha=\beta. [/mm] Jedoch weiß ich nicht genau wie ich das zeige und ob das schon alle Fälle sind.


Zu (b) bei jeder Folge oben ist der Grenzwert auch Häufungspunkt, gibt es da noch weitere mögliche Fälle wo Häufungspunkte auftreten können?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Konvergenz von Folge: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Di 08.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]