matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationKonvergenz uneigentlicher Int
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Konvergenz uneigentlicher Int
Konvergenz uneigentlicher Int < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz uneigentlicher Int: Konvergenz, Integral
Status: (Frage) beantwortet Status 
Datum: 20:45 Mo 04.05.2009
Autor: ZodiacXP

Aufgabe
Stellen Sie fest, welcher der folgenden uneigentlichen Integrale konvergieren:
[mm] $\integral_{0}^{\infty}{cos(x) dx}$ [/mm]
und
[mm] $\integral_{0}^{\infty}{\bruch{x dx}{\wurzel{1+x^2}}}$ [/mm]

Die Definition sagt, falls der Grenzwert
[mm] $\limes_{R\rightarrow\infty} \integral_{0}^{R}{f(x)}$ [/mm]
existiert, so ist das Integral konvergent.

Für den ersten Fall würde ich sagen, dass es konvergent ist, da [mm] $\integral_{0}^{R}{cos(x) dx} [/mm] = [mm] sin(x)\vmat{ R \\ 0 } [/mm]  = sin(R) - sin(0) = sin(R)$
Zwar bewegt sich der sinus auf und ab, aber trotzdem scheint es einen Grenzwert zu geben. Oder ist es gerade deswegen nicht so?

Das zweite ähnlich:
[mm] $\integral_{0}^{R}{\bruch{x dx}{\wurzel{1+x^2}}} [/mm] = [mm] \wurzel{1+x^2}\vmat{ R \\ 0 } [/mm] = [mm] \wurzel{1+R^2} [/mm] - [mm] \wurzel{1+0^2} [/mm] = [mm] \wurzel{1+R^2} [/mm] - 1$

Scheinbar konvergent. Aber auch hier frage ich mich was mit R=1 ist. An dieser Stelle würde die Funktion Probleme bereiten. Wie sieht es da aus?

        
Bezug
Konvergenz uneigentlicher Int: Korrekturen
Status: (Antwort) fertig Status 
Datum: 20:49 Mo 04.05.2009
Autor: Loddar

Hallo Zodiac!


> Zwar bewegt sich der sinus auf und ab, aber trotzdem
> scheint es einen Grenzwert zu geben. Oder ist es gerade
> deswegen nicht so?

Zweiteres ist der Fall: es gibt also keinen Grenzwert.

  

> Das zweite ähnlich:
> [mm]\integral_{0}^{R}{\bruch{x dx}{\wurzel{1+x^2}}} = \wurzel{1+x^2}\vmat{ R \\ 0 } = \wurzel{1+R^2} - \wurzel{1+0^2} = \wurzel{1+R^2} - 1[/mm]
>  
> Scheinbar konvergent.

[notok] Warum? Was passiert für [mm] $\limes_{R\rightarrow\infty}\wurzel{1+R^2}$ [/mm] ?


> Aber auch hier frage ich mich was mit R=1 ist.

Warum?


> An dieser Stelle würde die Funktion Probleme
> bereiten. Wie sieht es da aus?

Wieso sollte es dort Probleme geben?


Gruß
Loddar


Bezug
                
Bezug
Konvergenz uneigentlicher Int: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:57 Mo 04.05.2009
Autor: ZodiacXP


> [notok] Warum? Was passiert für
> [mm]\limes_{R\rightarrow\infty}\wurzel{1+R^2}[/mm] ?

  
Ach Gott.
Divergent!
[mm]\limes_{R\rightarrow\infty}\wurzel{1+R^2} \ge \limes_{R\rightarrow\infty}\wurzel{R^2} = \limes_{R\rightarrow\infty}R = \infty[/mm]

> Wieso sollte es dort Probleme geben?

Das mit R=1 hat sich erledigt. War ein Gedankenfurz von mir.

Ist dies schon der Vollständige Beweis für die Konvergenz (bzw. das es keine Konvergenz gibt) ?

Vielen Dank,
Zod


Wo kann man hier Benutzer bewerten?

Bezug
                        
Bezug
Konvergenz uneigentlicher Int: nun richtig
Status: (Antwort) fertig Status 
Datum: 21:01 Mo 04.05.2009
Autor: Loddar

Hallo Zodiac!


> Divergent!

Rüchtüsch!


> [mm]\limes_{R\rightarrow\infty}\wurzel{1+R^2} \ge \limes_{R\rightarrow\infty}\wurzel{R^2} = \limes_{R\rightarrow\infty}R = \infty[/mm]

[ok]

  

> Ist dies schon der Vollständige Beweis für die Konvergenz
> (bzw. das es keine Konvergenz gibt) ?

So, wie du es aufgeschrieben hast, reicht es m.E. wunderbar aus.


Gruß
Loddar
  

> Wo kann man hier Benutzer bewerten?

Gar nicht! Alle Antworter helfen hier absolut außer Wertung. ;-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]