matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationKonvergenz uneig. Integrale
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Konvergenz uneig. Integrale
Konvergenz uneig. Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz uneig. Integrale: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 00:28 Mi 04.02.2009
Autor: Newbie89

Aufgabe
Zeigen Sie, dass die uneigentliche Integrale [mm] \integral_{0}^{\bruch{\pi}{2}}{\bruch{sin^2 x cos^3 x}{x^{\bruch{e}{\pi}}} dx} [/mm] und [mm] \integral_{1}^{\infty}{\bruch{e^{-x}}{x} dx} [/mm] konvergent sind.

Hallo Leute,

mir wurde eine Aufgabe gestellt, zu der ich keinen Lösungsansatz habe. Ich weiß einfach nicht, wie ich vorgehen soll.
Ich sollte hier, glaube ich mit dem Grenzwertsatz arbeiten. Zumindest weiß ich nicht, wie und wann ich das anwenden soll.

Könnt Ihr mir da behilflich sein?

Gruß Fabi

        
Bezug
Konvergenz uneig. Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 06:58 Mi 04.02.2009
Autor: Leopold_Gast

Oftmals liegt solchen Aufgaben ein Mißverständnis bei demjenigen, der sie lösen soll, zugrunde. Da steht nicht "berechnen Sie ...", sondern "zeigen Sie, daß ... konvergent sind".
Und das funktioniert hier mit dem Majorantenkriterium (Vergleichskriterium). Vielleicht schaust du in deinen Unterlagen nach, was du dazu findest. Und dann überlege zunächst: An welcher Grenze ist das erste Integral uneigentlich, an welcher das zweite?
Dann beachte, daß Sinus und Cosinus im Integrationsintervall niemals negativ und durch 1 nach oben beschränkt sind und daß der Exponent [mm]\frac{\operatorname{e}}{\operatorname{\pi}}[/mm] kleiner als 1 ist. Beim zweiten Integral schließlich kannst du beim Vergleichen den Nenner "verschwinden lassen".

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]