matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKonvergenz und lim inf
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Konvergenz und lim inf
Konvergenz und lim inf < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz und lim inf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:38 So 13.06.2004
Autor: Michael_1

Liebe Matheraum Mitglieder,

ich sitze hier vor einer Aufgabe, die wohl ganz einfach sein muss (zumindest ist sie die erste von vier auf meinem Übungszettel), aber so oft ich mir das Ding auch anschaue: Ich komme damit nicht zu Rande. Vielleicht stehe ich ja gerade auf der Leitung, denn normalerweise fällt mir eigentlich immer (zumindest) ein Ansatz ein. Wer kann mir einen kleinen Tipp geben, wie ich mich der Aufgabe annähern kann?

Aufgabe:

Konvergiert die Reihe ak (ak Element der komplexen Zahlen, ak ungleich Null) so gilt: lim inf (k geht gegen unendlich) Betrag von ((ak+1) : (ak)) kleiner/gleich 1.

[marc: [mm] $\liminf\limits_{k\to\infty}\left|\bruch{a_{k+1}}{a_k}\right|\le [/mm] 1$]

Vielen lieben Dank für die Hilfe,

Michael

        
Bezug
Konvergenz und lim inf: Antwort
Status: (Antwort) fertig Status 
Datum: 03:14 Mo 14.06.2004
Autor: Stefan

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Lieber Michael!

Ja, die Aufgabe ist in der Tat ziemlich einfach.

Wäre die Behauptung nicht wahr, so gäbe es ein $\varepsilon>0$, so dass für unendlich viele $n \in \IN$

(*) $\frac{|a_{n+1}|}{|a_n|} > \liminf\limits_{k \to \infty} \left\vert \frac{a_{k+1}}{a_k} \right\vert - \varepsilon =:\Theta > 1$.

Nun sei $(\tilde{a}_n})_{n \in \IN}$ die Folge, die durch Fortlassen aller Folgenglieder $a_n$, die (*) nicht erfüllen, entsteht.

Dann zeigt man mit vollständiger Induktion nach $n$:

$|\tilde{a}_{n+1}| > |\tilde{a}_0| \cdot \Theta^n$.

Daraus folgt unmittelbar die Behauptung, da für $\Theta>1$ die Reihe

$\sum\limits_{n=0}^{\infty} \Theta^n$

divergiert. Wenn aber schon eine Teilreihe von

$\sum\limits_{n=0}^{\infty}a_n$

divergiert, dann aber erst recht die ganze Reihe.

Liebe Grüße
Stefan


Bezug
                
Bezug
Konvergenz und lim inf: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:20 Do 17.06.2004
Autor: Uni_Anfaenger

Guten Abend!

Da hat also noch jemand das selbe Blatt wie ich...! Was mich jetzt allerdings etwas verwirrt ist der b-Teil der Aufgabe:

Man berechen mit Hilfe des Quotientenkriteriums und Teil (a) den Konvergenzradius der Reihe [mm] (n^n*z^n) [/mm] : n! und zeige limes (n gegen unendlich) n:n!^1/n=e

Für den ersten Teil der b habe ich r=1 rausbekommen (hoffe, das stimmt), aber für den Rest der b habe ich keine so richtige Idee, ich weiß nur (klar) 1:n!=e.

Wer hat da eine Idee?

Grüße,

eine Anfängerin

Bezug
                        
Bezug
Konvergenz und lim inf: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Fr 18.06.2004
Autor: Stefan

Hallo Uni-Anfängerin!

> Man berechen mit Hilfe des Quotientenkriteriums und Teil
> (a) den Konvergenzradius der Reihe [mm](n^n*z^n)[/mm] : n! und zeige
> limes (n gegen unendlich) n:n!^1/n=e

Wie ist das letzte zu lesen. Schreibe es bitte eindeutig auf und benutze dabei unsere Formelhilfe. Informationen und Hilfen, wie man diese anwendet, findest hier hier: www.matheraum.de/mm

> Für den ersten Teil der b habe ich r=1 rausbekommen (hoffe,
> das stimmt),

[ok]

> aber für den Rest der b habe ich keine so
> richtige Idee, ich weiß nur (klar) 1:n!=e.

Du meinst:

[mm] $\sum_{n=0}^{\infty} \frac{1}{n!} [/mm] = e$ !!

Muss denn oben auch ein Summenzeichen hin? Bitte schreibe deine Frage noch einmal neu auf, diesmal aber mit eindeutigen Formeln.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]