matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKonvergenz und absolute Konvergenz von Reihen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Konvergenz und absolute Konvergenz von Reihen
Konvergenz und absolute Konvergenz von Reihen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz und absolute Konvergenz von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:51 Do 27.05.2004
Autor: baddi

Erst mal denke ich das Wort Reihe bedeutet das gleich wie Folge.
Also nicht irritieren lassen.
Was ist aber eine absolute Konvergenz ?
Mal schauen was google.de sagt...
Aha unter http://www.matheboard.de/lexikon/index.php/Absolute_Konvergenz
steht:
-----------
Eine Reihe
[m]\sum_{n=0}^{\infty} a_n [/m]
heißt absolut konvergent, wenn gilt:
[m] \sum_{n=0}^{\infty} |a_n| [/m]
konvergiert, also die Reihe der Absolutbeträge.
Aus absoluter Konvergenz folgt automatisch die Konvergenz der Reihe.
-----------
Mit [m]|a_n| [/m] ist also der Betrag gemeint.

Beispiel:
[m]((-1)^n) = ( -1^0,-1^1-1^2,-1^3,-1^4,-1^5,-1^6, ... ) = ( 1, -1, 1, -1, 1, -1, 1 ... ) [/m]
[m](|(-1)^n | ) = ( 1, 1, 1, 1, 1, 1, 1 ... ) [/m]

Aha, dann kann man schob mal sagen das
[m]((-1)^n)[/m] konvergiert aber nicht absolut konvergiert ?

        
Bezug
Konvergenz und absolute Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Do 27.05.2004
Autor: Marc

Hallo baddi,

> Erst mal denke ich das Wort Reihe bedeutet das gleich wie
> Folge.

Zwei Begriffe, die dasselbe bedeuten? Solche Redundanz ist in der Mathematik doch eher unüblich ;-)

Also, eine Folge ist eine unendliche Liste von Zahlen, eine Reihe dagegen ist eine Summe von Folgengliedern.
Man kann aber ohne Probleme eine Folge in eine Reihe und eine Reihe in eine Folge umwandeln.

>  Also nicht irritieren lassen.
>  Was ist aber eine absolute Konvergenz ?
>  Mal schauen was google.de sagt...
>  Aha unter
> http://de.wikipedia.org/wiki/Absolute_Konvergenz

Warum nicht der direkte Link zu wikipedia:
[]http://de.wikipedia.org/wiki/Absolute_Konvergenz

Da geht es um die absolute Konvergenz von Reihen.

>  Mit [m]|a_n|[/m] ist also der Betrag gemeint.
>  
> Beispiel:
>  [m]((-1)^n) = ( -1^0,-1^1-1^2,-1^3,-1^4,-1^5,-1^6, ... ) = ( 1, -1, 1, -1, 1, -1, 1 ... )[/m]

Du meinst hier [mm] $((-1)^n) [/mm] = ( [mm] \red{(}-1\red{)}^0,\red{(}-1\red{)}^1,\red{(}-1\red{)}^2,\red{(}-1\red{)}^3,\red{(}-1\red{)}^4,\red{(}-1\red{)}^5,\red{(}-1\red{)}^6, [/mm] ... )$

>
> [m](|(-1)^n | ) = ( 1, 1, 1, 1, 1, 1, 1 ... )[/m]

Das sind jetzt aber Folgen, das ist dir schon klar?

> Aha, dann kann man schob mal sagen das
> [m]((-1)^n)[/m] konvergiert aber nicht absolut konvergiert ?

Da hast du jetzt Äpfel mit Birnen verglichen, und auch noch einen logischen Fehler gemacht.
Die Folge der Absolutbeträge konvergiert doch, die ursprüngliche Folge aber nicht.

Eine Beispielreihe wäre:

[mm] $\summe_{k=1}^\infty \bruch{1}{k^2}$ [/mm]

Dies ist folgende unendliche Summe: [mm] $\bruch{1}{1}+\bruch{1}{4}+\bruch{1}{9}+\bruch{1}{16}+\ldots$. [/mm]

(Die Folge der Zahlen dagegen würde so aussehen: [mm] $\bruch{1}{1},\ \bruch{1}{4},\ \bruch{1}{9},\ \bruch{1}{16},\ \ldots$.) [/mm]


Es gilt folgender wichtiger Satz:
Eine absolut-konvergente Reihe ist konvergent.

Beispiel:
[mm] $\summe_{k=1}^\infty (-1)^k \bruch{1}{k^2}$ [/mm] konvergiert, weil die Reihe der Absolutbeträge konvergiert:
[mm] $\summe_{k=1}^\infty \left| (-1)^k \bruch{1}{k^2}\right|=\summe_{k=1}^\infty \bruch{1}{k^2}=\bruch{\pi^2}{6}$ [/mm]

Die Umkehrung des Satzes gilt natürlich nicht:
Aus der Konvergenz einer Reihe kann nicht auf die absolute Konvergenz geschlossen werden.

Ich hoffe, es ist ein bisschen klarer geworden, vor allem der Unterschied zwischen Reihe und Folge.

Viele Grüße,
Marc



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]