matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz und Grenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Konvergenz und Grenzwert
Konvergenz und Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz und Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:06 Di 06.11.2012
Autor: hinterhauserc

Aufgabe
Es sei [mm] a_{n}:= (1+\bruch{1}{n})^{n} [/mm]

[mm] b_{n}:= (1+\bruch{1}{n})^{n+1} [/mm]

Aufgabe 1: Zeigen Sie, dass [mm] a_{n} [/mm] und [mm] b_{n} [/mm] konvergieren.
Aufgabe 2: Zeigen Sie, dass die Grenzwerte beider Folgen übereinstimmen, d.h. [mm] \limes_{n\rightarrow\infty} a_{n} [/mm] = [mm] \limes_{n\rightarrow\infty}b_{n} [/mm]

Hallo!

Vorweg damit keine bösen Meldungen kommen -> ich erwarte keine Lösung sondern eine Hilfestellung wie ich an die Aufgaben herangehen muss, um eine Lösung erarbeiten zu können.
Bitte um Lösungsansätze!

Vielen Dank!

lg

        
Bezug
Konvergenz und Grenzwert: Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 20:12 Di 06.11.2012
Autor: Richie1401

Hallo,

Hinweis zur Aufgabe 2:
Wenn du gezeigt hast, dass [mm] a_n [/mm] und [mm] b_n [/mm] konvergieren, kannst du für [mm] b_n [/mm] folgendes anwenden:
[mm] \left(1+\frac{1}{n}\right)^{n+1}=\left(1+\frac{1}{n}\right)^{1}*\left(1+\frac{1}{n}\right)^{n} [/mm]

Betrachte nun den Grenzübergang und nutze die Grenzwertsätze. Ohne den zweiten Grenzwert zu berechnen sieht man dann, dass [mm] \lim\limits_{n\to\infty}a_n=\lim\limits_{n\to\infty}b_n [/mm]

Bezug
        
Bezug
Konvergenz und Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Di 06.11.2012
Autor: abakus


> Es sei [mm]a_{n}:= (1+\bruch{1}{n})^{n}[/mm]
>  
> [mm]b_{n}:= (1+\bruch{1}{n})^{n+1}[/mm]
>  
> Aufgabe 1: Zeigen Sie, dass [mm]a_{n}[/mm] und [mm]b_{n}[/mm] konvergieren.
>  Aufgabe 2: Zeigen Sie, dass die Grenzwerte beider Folgen
> übereinstimmen, d.h. [mm]\limes_{n\rightarrow\infty} a_{n}[/mm] =
> [mm]\limes_{n\rightarrow\infty}b_{n}[/mm]
>  Hallo!
>  
> Vorweg damit keine bösen Meldungen kommen -> ich erwarte
> keine Lösung sondern eine Hilfestellung wie ich an die
> Aufgaben herangehen muss, um eine Lösung erarbeiten zu
> können.
>  Bitte um Lösungsansätze!
>  
> Vielen Dank!
>  
> lg

Hallo,
der grobe Fahrplan kann folgender sein:
Zeige, dass
a wachsend ist
b fallend ist,
für jedes n gilt b>a,
die Differenz b-a gegen Null geht.

Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]