matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKonvergenz und Grenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Konvergenz und Grenzwert
Konvergenz und Grenzwert < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz und Grenzwert: Frage/Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:35 Mo 13.12.2004
Autor: Chinakohl

hallo leute,
vielleicht könnt ihr mir ja helfen. hab folgende aufgabe zu lösen:

Für welche a [mm] \in \IR [/mm] konvergiert die Folge [mm] (y_{n})_{n\in \IR} [/mm] , falls
[mm] y_{2}= \bruch{a^{2n} -1}{a^{2n} +1} [/mm] .
Man bestimmt den Grenzwert, wenn möglich.

Danke schonmal im Vorraus.

        
Bezug
Konvergenz und Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Mo 13.12.2004
Autor: Shaguar

Moin,

so dann hier die Antwort. Es geht ganz einfach mit der Fallunterscheidung.

Fall1: a=0

dann steht nur noch [mm] \bruch{-1}{1} [/mm] da und damit ist der Grenzwert hier -1

Fall2: |a| =1 (Betrag kannst du schreiben weil du wegen 2n immer nen geraden Exponenten hast)

also steht dann da [mm] \bruch{1^{2n}-1}{1^{2n}+1} [/mm] also ist der Grenzwert hier logischerweise null da [mm] 1^n [/mm] immer 1 ist.

Fall3: |a| > 1  n>0  hier ist der Grenzwert 1

Begründung: der Zähler ist ja konstannt um 2 kleiner als der Nenner. Diese Differenz kann man im Unendlichen [mm] (a^{2n}-1 [/mm] und [mm] a^{2n}+1 [/mm] laufen gegen unendlich) vernachlässigen also ist der Grenzwert 1.

Fall 4:|a|<1 n>0 hier ist der Grenzwert -1

Begründung: [mm] a^{2n}-1 [/mm] und [mm] a^{2n}+1 [/mm] laufen gegen 0 und dann steht da nur noch -1. Wenn man Zahlen zwischen 0 und 1 oft hoch genug potenziert sind sie null. logisch oder?

Fall 5: n=0 hier ist der Grenzwert -1
da [mm] a^{2n}-1 [/mm] und [mm] a^{2n}+1 [/mm] null sind.

Fall 6: |a|<1 n<0 Grenzwert  1

ist praktisch gleich fall 3 bloß ein wenig umgeschrieben.

Fall 7: |a|>1 n<0 Grenzwert -1

Gut mehr Fälle sind mir nicht eingefallen.



Noch Fragen? Hätte man eigentlich auch alleine drauf kommen können. Formulier es vielleicht noch ein wenig schöner dann gibts Punkte.

Gruß Shaguar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]