matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKonvergenz und Grenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Konvergenz und Grenzwert
Konvergenz und Grenzwert < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz und Grenzwert: Frage
Status: (Frage) beantwortet Status 
Datum: 18:24 So 21.11.2004
Autor: destiny

Hallo, Leute!
Ich hab da ein Problem bei der *-Aufgabe. Solche Aufgaben mit * sind bei uns schwieriger als sonst, das ist auch der Grund, warum ich nicht weiter komme.

Das ist die Aufgabe:
Seien  [mm] a_{0}, a_{1} \in \IR. [/mm] Die Folge [mm] a_{n} [/mm] mit [mm] n\in \IN [/mm] sei rekursiv durch [mm] a_{n} [/mm] =  [mm] \bruch{2}{5}a_{n-2} [/mm] + [mm] \bruch{3}{5}a_{n-1} [/mm] für n [mm] \ge2 [/mm] definiert.
Zeigen Sie, dass die Folge konvergiert und bestimmen Sie den Grenzwert.

Wie geht man diese Aufgabe ran? Bitte helft mir! Danke!

Destiny

        
Bezug
Konvergenz und Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 01:36 Mo 22.11.2004
Autor: Hugo_Sanchez-Vicario

Hallo destiny,

nimm dir mal zwei beliebige Startwerte für [mm] a_0 [/mm] und [mm] a_1 [/mm] und zeichne dir am Zahlenstrahl die nächsten paar Folgenglieder auf. Vielleicht geht dir dann schon ein kleines Lichtchen auf, wie du die Konvergenz beweisen kannst.

Wenn das nicht klappt, dann setze erst [mm] a_0 [/mm] gleich Null, dann [mm] a_1 [/mm] gleich Null und versuche in diesen beiden Fällen den Grenzwert zu bestimmen.

Hugo

Bezug
                
Bezug
Konvergenz und Grenzwert: ansatz
Status: (Frage) beantwortet Status 
Datum: 20:28 Mo 22.11.2004
Autor: destiny

Hallo, Hugo!
Hier habe ich versucht, nach deiner Anweisung einen Ansatz zu finden.

Also, ich habe zunächst  [mm] a_{0}=0 [/mm] gesetzt, und  [mm] a_{1}=1. [/mm]
Für [mm] a_{2}=0,6 [/mm]
[mm] a_{3}= \bruch{19}{25} [/mm]
[mm] a_{4}= \bruch{87}{215} [/mm] und so weiter.
Dabei stelle ich fest, dass sich die [mm] a_{n} [/mm] dem Grenzwert 0,7 nähern.

Wähle ich aber [mm] a_{0}=1 [/mm]  und  [mm] a_{1}=0, [/mm] so nähern sich die [mm] a_{n} [/mm] dem Wert 0,29.

Wie soll ich jetzt weiter machen? Ich blick da nicht so ganz durch.
Wenn ich die Konvergenz dieser Folge zeigen will, reicht es dann, wenn ich zeige, dass sich zwei [mm] a_{n} [/mm] untereinander beliebig nahe kommen, oder reicht das nicht, um die Konvergenz zu zeigen? Ich will zeigen, dass diese Folge eine Cauchy Folge ist. Darf ich dafür überhaupt feste Werte für [mm] a_{0} [/mm] und [mm] a_{1} [/mm] wählen?
Ich versteh nicht ganz, wie ich den Grenzwert bestimmen soll. Bitte hilf mir!
Danke

Destiny



Bezug
                        
Bezug
Konvergenz und Grenzwert: Cauchy-Folge
Status: (Antwort) fertig Status 
Datum: 14:37 Di 23.11.2004
Autor: Hugo_Sanchez-Vicario

Hallo destiny,

du kannst sehr leicht zeigen, dass deine Folge eine Cauchy-Folge ist, denn offensichtlich gilt:
[mm]\forall n>N:min(a_{N-1},a_N)
Wenn du noch zeigen kannst, dass dieses Intervall kleiner als jedes Epsilon wird (das dürfte nicht allzu schwer sein), dann konvergiert die Folge ganz offensichtlich.

Zur Berechnung des Grenzwertes hab ich jetzt keine richtig tolle Idee.
Du könntest versuchen, welche Zahl a bewirkt, dass bei [mm]a_{n-2}=a-\epsilon[/mm] und [mm]a_{n-1}=a+\epsilon[/mm] rauskommt, dass [mm] a_n=a [/mm] ist.

Hugo

Bezug
                        
Bezug
Konvergenz und Grenzwert: Grenzwert
Status: (Antwort) fertig Status 
Datum: 03:04 Mi 24.11.2004
Autor: Hugo_Sanchez-Vicario

Hallo destiny,

ich gebe zu, mein Vorschlag war nicht sooo produktiv. Hier eine mögliche Lösung.

Es seinen
[mm]m_{01}=\frac{a_1+a_0}{2}[/mm]
[mm]r_{01}=\frac{a_1-a_0}{2}[/mm],
so dass
[mm]a_1=m_{01}+r_{01}[/mm] und
[mm]a_0=m_{01}-r_{01}[/mm]

Diese Zerlegung in Mittelpunkt und gerichteten Radius des Intervalls nehmen wir für alle Indices vor, so dass wir erhalten:
[mm]a_n=\frac{2}{5}a_{n-2}+\frac{3}{5}a_{n-1}=[/mm]
[mm]=m_{(n-2),(n-1)}+\frac{1}{5}r_{(n-2),(n-1)}[/mm]

Damit ergibt sich neu berechnet:
[mm]m_{(n-1),n}=m_{(n-2),(n-1)}+\frac{3}{5}r_{(n-2),(n-1)}[/mm]
[mm]r_{(n-1),n}=-\frac{2}{5}r_{(n-2),(n-1)}[/mm]

Da die einzelnen Folgenglieder gegen den selben Grenzwert gehen müssen wie die Intervallmittelpunkte, bestimmen wir deren Grenzwert:
[mm]\lim_{n\rightarrow\infty}m_{(n-1),n}=[/mm]
[mm]=m_{01}+r_{01}\sum_{i=0}^\infty (-\frac{2}{5})^i=[/mm]
[mm]=\frac{2}{7}a_0+\frac{5}{7}a_1[/mm]

Natürlich steckt zwischen den Zeilen ein gewisser Einsetz- und Umformaufwand, aber ich hoffe, ich konnte dir ein bisschen weiterhelfen.

Hugo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]