matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz und Divergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenz und Divergenz
Konvergenz und Divergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz und Divergenz: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 23:33 So 30.11.2008
Autor: Nyx

Aufgabe
Bestimmen Sie für die Folgen [mm] $a_{n}$ [/mm] und [mm] $b_{n}$ [/mm] (mit $n [mm] \in \IN$), [/mm] definiert durch
[mm] $a_{n} [/mm] := [mm] \bruch{(3-n)^{3}}{3n^{3}-1} [/mm] bzw. [mm] b_{n} [/mm] := [mm] \bruch{1+(-1)^{n}*n^{2}}{2+3n+n^{2}}$ [/mm]
welche der drei Eigenschaften "beschränkt", "konvergent" bzw. "divergent " vorliegt. Bestimmen Sie im Falle der Konvergenz zusätzlich den Grenzwert der Zahlenfolge. Welche Häufigkeitspunkte haben die Folgen?

Hallo Leute,

ich hab jetzt mal die ganze Aufgabe geschrieben. Allerdings habe ich ein Problem.

In der Vorlesung haben wir den Satz gehabt:
[mm] $a_{n} [/mm] = [mm] a_{1}+\summe_{k=2}^{n}(a_{k}-a_{k-1})$ [/mm]

hoffe das ich den soweit richtig abgeschrieben habe....nen Freund hat mir kurz am Telefon gesagt, dass man das darüber lösen kann....ich komme aber einfach nicht weiter....
wie zeige ich denn so die Konvergenz??

Wäre über schnelle Hilfe sehr dankbar

Mfg Nyx

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Konvergenz und Divergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:17 Mo 01.12.2008
Autor: schachuzipus

Hallo Nyx,

bitte keine Doppelposts fabrizieren, du kannst deinen Artikeltext auch nach dem Absenden noch bearbeiten.

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]