matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz und Divergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenz und Divergenz
Konvergenz und Divergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz und Divergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:55 Di 20.11.2007
Autor: Wimme

Aufgabe
Sind folgende Aussagen für jede Wahl von reellen Folgen [mm] (a_n)_{n \in \mathbb N} [/mm] und [mm] (b_n)_{n \in \mathbb N} [/mm] korrekt?

1)Ist [mm] a_n [/mm] divergent und [mm] b_n [/mm] divergent, so ist [mm] a_n+b_n [/mm] divergent
2) Ist [mm] a_n [/mm] divergent und [mm] b_n [/mm] divergent, so ist [mm] a_nb_n [/mm] divergent
3) Ist [mm] (a_{n+1}-a_n)_{n \in \mathbb N} [/mm] gegen 0 konvergent, so konvergiert [mm] a_n [/mm]
4) Gilt [mm] |a_{n+1}|>2|a_n| [/mm] für alle n [mm] \in \mathbb [/mm] N, so ist [mm] a_n [/mm] divergent
5) Ist [mm] a_n [/mm] konvergent gegen a mit a [mm] \not [/mm] = 0 und gilt [mm] a_n \not [/mm] = 0 [mm] \forall [/mm] n [mm] \in \mathbb [/mm] N , so gilt
[mm] \limes_{n\rightarrow\infty}\bruch{a_{n+1}}{a_n}=1 [/mm]

Hi!

Ich habe obige Aufgaben versucht zu bearbeiten, bin mir aber nicht immer sicher.
folgendes habe ich mir gedacht:
1) Ist falsch, wähle zB [mm] a_n= (-1)^k [/mm] und [mm] b_n=(-1)^{k+1} [/mm]
2) ebenso falsch [mm] a_n= (-1)^k [/mm] und [mm] b_n=(-1)^{k} [/mm]
3) Ich bin mir nicht sicher, aber ich würde sagen es stimmt, nach Cauchy. Zwar sagt Cauchy, dass der Abstand zweier Folgendglieder kleiner einem Epsilon sein muss, aber wenn er Null ist, müsste das doch auch gehen, oder?
4) Bin ich mir gar nicht sicher :( Ich  habe versucht mit Dreiecksungleichung rumzufummeln, bin aber zu nichts gescheitem gekommen. Das einzige, was ich weiß, ist, dass die Folge sehr schnell wächst oder fällt. Ob sie nun beschränkt ist, weiß ich nicht, was ich ja wissen müsste. Hier ein Tipp?
5) Ich würde sagen, es ist korrekt. Im unendlichen dürften die Folgenglieder "so gut wie" gleich sein...

Danke euch schon mal im Voraus!

        
Bezug
Konvergenz und Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Di 20.11.2007
Autor: leonhard

1, 2: ok

3: Schau mal [mm] $a_n=\log(n)$ [/mm] an.

4: Es gibt ein $c>0$ mit [mm] $|a_n| [/mm] > [mm] c\cdot 2^n$. [/mm]
    Da [mm] $c\cdot 2^n$ [/mm] divergiert, divergiert auch [mm] $|a_n|$ [/mm] und somit [mm] $a_n$ [/mm]

    Du kannst auch eine Schranke annehmen und zeigen, dass endlich viele Iterationen genügen, um die Schranke zu überschreiten.

Wenn [mm] $0<|a_k|S/|a_k|$. [/mm] Dann ist [mm] $|a_{k+m}|>S$. [/mm]

5: Was ist, wenn [mm] $a_n$ [/mm] ständig das Vorzeichen wechselt?


Bezug
                
Bezug
Konvergenz und Divergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:18 Mi 21.11.2007
Autor: Wimme

hallo leonhard!

Vielen Dank für deine Antwort!

3) Sehe ich ein, aber da muss man auch so erstmal drauf kommen.
5) Wenn [mm] a_n [/mm] immer das Vorzeichen wechselt, kann die Folge denn dann gegen ein a konvergieren? Höchstens gegen null, oder? Jedenfalls sehe ich das noch nicht so ganz ein ;)
4) Verstehe ich deine Argumentation leider gar nicht :( Wieso sollte [mm] a_n [/mm] divergieren, nur weil sie größer als c [mm] \cdot 2^n [/mm] ist? Wie kommst du überhaupt auf [mm] 2^n? [/mm]

Hoffe auf abermalige Antworten :)
danke!

Bezug
                        
Bezug
Konvergenz und Divergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:36 Fr 23.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]