matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz rekursiv def. Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Konvergenz rekursiv def. Reihe
Konvergenz rekursiv def. Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz rekursiv def. Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:03 Mo 20.11.2006
Autor: Fuffi

Aufgabe
Seien a,b [mm] \in \IR [/mm] , [mm] a_{0} [/mm] = a, [mm] a_{1} [/mm] = b und rekursiv [mm] a_{n+1} [/mm] = [mm] \bruch{1}{2} (a_{n-1} [/mm] + [mm] a_{n} [/mm] ) für n [mm] \ge [/mm] 1. Man Zeige, dass ( [mm] a_{n} [/mm] ) konvergiert und bestimme den Limes.
Hinweis: Man betrachte zuerst [mm] b_{n} [/mm] = [mm] a_{n+1} [/mm] - [mm] a_{n} [/mm]

Ich komme da einfach nicht rein in die Aufgabe. Der Tip hilft mir auch nicht wirklich weiter. Kann mir vll jemand noch einen Tip geben wie ich an die Aufgabe rangehen kann?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Konvergenz rekursiv def. Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:54 Mo 20.11.2006
Autor: galileo

Hallo Fuffi

> Seien [mm]a,b \in \IR[/mm] , [mm]a_{0}=a[/mm], [mm]a_{1}=b[/mm] und rekursiv
> [mm]a_{n+1}=\bruch{1}{2} (a_{n-1}+a_{n}[/mm] ) für [mm]n\geqslant1[/mm]. Man
> Zeige, dass ( [mm]a_{n}[/mm] ) konvergiert und bestimme den Limes.
> Hinweis: Man betrachte zuerst [mm]b_{n}=a_{n+1}-a_{n}[/mm]
>  Ich komme da einfach nicht rein in die Aufgabe. Der Tip
> hilft mir auch nicht wirklich weiter. Kann mir vll jemand
> noch einen Tip geben wie ich an die Aufgabe rangehen kann?

[mm]b_n=a_{n+1}-a_n=\bruch{1}{2}\left( a_{n-1}+a_n\right)-a_n =-\bruch{1}{2}\left( a_n-a_{n-1}\right)=-\bruch{1}{2}b_{n-1} [/mm]

[mm] \bruch{b_n}{b_{n-1}}=-\bruch{1}{2} [/mm]        (1)

Wenn wir auf Gleichung (1) Produkt von 1 bis n anwenden, und dann kürzen, erhalten wir:

[mm] \bruch{b_n}{b_{0}}=\left( -\bruch{1}{2}\right)^n [/mm]

Wir wenden hier die Definition von [mm]b_n[/mm] an:

[mm] \bruch{a_{n+1}-a_n}{a_1-a_0}=\left( -\bruch{1}{2}\right)^n [/mm]               (2)

Wir wenden auf Gleichung (2) Summe von 0 bis n an:

[mm] \bruch{a_{n+1}-a_0}{a_1-a_0}= \bruch{\left( -\bruch{1}{2}\right)^{n+1} -1}{-\bruch{1}{2}-1} [/mm]               (2)

Du kannst hier direkt limes anwenden.

Versuche das Ganze nachzuvollziehen. Wenn Unklarheiten sind, frage bitte nochmal.

Schöne Grüße, galileo

Bezug
                
Bezug
Konvergenz rekursiv def. Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Mo 20.11.2006
Autor: Fuffi

Danke erstmal. Ich habe noch eine Frage zu dem letzten Schritt, den habe ich nicht ganz nachvollziehen können. Wie kommst du an das Ergebnis wenn du die Summe bildest?

Bezug
                        
Bezug
Konvergenz rekursiv def. Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:10 Mo 20.11.2006
Autor: galileo

[mm] \summe_{i=f}^{n}\left( a_{i+1}-a_i\right) =a_{f+1}-a_f+a_{f+2}-a_{f+1}+\cdots +a_n-a_{n-1}+a_{n+1}-a_{n} =a_{n+1}-a_f [/mm]

In [mm]a_{i+1}[/mm] ersetzt man i durch den oberen Wert (also n), und in [mm]a_i[/mm] ersetzt man i durch den unteren Wert (also f). Diese Regel gilt auch wenn [mm]a_{i+1}\ \mathrm{und}\ a_{i}[/mm] vertauscht sind.

Und rechts hast du folgendes:

[mm] \summe_{i=f}^{n}q^i=\summe_{i=f}^{n}\bruch{q^i(q-1)}{q-1} =\summe_{i=f}^{n}\bruch{q^{i+1}-q^i}{q-1} =\bruch{q^{n+1}-q^f}{q-1} [/mm]

Hast du es jetzt? :-)

Schöne Grüße, galileo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]