matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz nachweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Konvergenz nachweisen
Konvergenz nachweisen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz nachweisen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:29 Do 01.06.2006
Autor: Raingirl87

Aufgabe
Weisen Sie die Konvergenz der Folge (Sn)n
Sn :=  [mm] \summe_{j=1}^{n} \bruch{(-1)^{j+1}}{j} [/mm] , n [mm] \in \IN, [/mm]
nach.

Ich habe bei dieser Folge das Quotientenkriterium angewendet:

= [mm] \bruch{ \bruch{(-1)^{j+2}}{j+1} }{ \bruch{(-1)^{j+1}}{j} } [/mm]
=  [mm] \bruch{(-1)^{j+2} j}{(j+1) (-1)^{j+1}} [/mm]
=  [mm] \bruch{-j}{j+1} [/mm]  (j [mm] \ge [/mm] 0)  < 1 --> konvergent

Stimmt das so oder muss ich das irgendwie anders machen?

Danke schonmal!


        
Bezug
Konvergenz nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Do 01.06.2006
Autor: leduart

Hallo
Das Quotientenkriterium klappt nur wenn der lim echt kleiner 1 ist!
Du würdest ja beweisen, dass Summe 1/n konvergiert!
dies ist eine Leibnizreihe, die Summanden sind eine Nullfolge, und das Vorzeichen alterniert. Wenn ihr das nicht in der Vorlesung bewiesen habt, sieh in einem Buch unter Leibnizkriterium oder Leibnizreihe nach.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]