matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKonvergenz mit Imaginärteil
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Komplexe Zahlen" - Konvergenz mit Imaginärteil
Konvergenz mit Imaginärteil < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz mit Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:37 Mi 16.01.2013
Autor: Xaderion

Aufgabe
Welche dieser Zahlenfolgen sind konvergent, welche divergent? Geben Sie gegebenenfalls den Grenzwert an.
[...]
[mm] e_{n} [/mm] := [mm] \pi [/mm] + [mm] \bruch{i^n}{12+n} [/mm]
[...]

Moin,

die anderen Teile der Aufgabe bekomme ich ohne Probleme hin, nur jetzt habe ich eine Frage:
Ich weiß, dass die Folge einen Häufungspunkt bei [mm] \pi [/mm] hat und sie bei geradem n immer um [mm] \pi [/mm] schwankt, da dann ja i ±1 ist. Aber wie sieht es jetzt bei ungeradem n aus? Dann steht ja ±i im Nenner. Ich weiß jetzt nicht, wie das bei einer Folge gehandhabt wird, da ich noch nicht viel mit dem Imaginärteil zu tun hatte. Daher meine Frage: Wird das i dann bei der Betrachung rausgelassen und die Folge konvergiert gegen [mm] \pi [/mm] oder ist sie divergent?

Vielen Dank für Erklärungen (:

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz mit Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Mi 16.01.2013
Autor: Diophant

Hallo,

> Welche dieser Zahlenfolgen sind konvergent, welche
> divergent? Geben Sie gegebenenfalls den Grenzwert an.
> [...]
> [mm]e_{n}[/mm] := [mm]\pi[/mm] + [mm]\bruch{i^n}{12+n}[/mm]
> [...]
> Moin,
>
> die anderen Teile der Aufgabe bekomme ich ohne Probleme
> hin, nur jetzt habe ich eine Frage:
> Ich weiß, dass die Folge einen Häufungspunkt bei [mm]\pi[/mm] hat

Das hat sie, aber es ist nicht einfach nur ein Häufungspunkt.

> und sie bei geradem n immer um [mm]\pi[/mm] schwankt, da dann ja i
> ±1 ist. Aber wie sieht es jetzt bei ungeradem n aus?

Da schwankt sie auch, aber in vertikaler Richtung.

> Dann

> steht ja ±i im Nenner. Ich weiß jetzt nicht, wie das bei
> einer Folge gehandhabt wird, da ich noch nicht viel mit dem
> Imaginärteil zu tun hatte. Daher meine Frage: Wird das i
> dann bei der Betrachung rausgelassen und die Folge
> konvergiert gegen [mm]\pi[/mm] oder ist sie divergent?

Sie konvergiert gegen [mm] \pi. [/mm] Nutze aus, dass [mm] |i^n|=1, [/mm] dann dürfte es ein leichtes sein, dass zu zeigen. Dein Häufungspunkt ist also der Grenzwert.


Gruß, Diophant


Bezug
                
Bezug
Konvergenz mit Imaginärteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:23 Mi 16.01.2013
Autor: Xaderion

Vielen Dank (:

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]