matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz komplexe Folge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergenz komplexe Folge
Konvergenz komplexe Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz komplexe Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 Do 10.03.2011
Autor: Loriot95

Aufgabe
Untersuchen Sie die Folge [mm] (a_{n})_{n}\subseteq \IC [/mm] mit [mm] a_{n}:= 2i^{n}+\bruch{1}{2^{n}} [/mm] auf Konvergenz, Häufungspunkte und konvergente Teilfolgen. (Geben Sie für jeden Häufungspunkt eine gegen ihn konvergente Teilfolge an).

Guten Tag,

habe mit dieser Aufgabe so meine Probleme. Habe keine Idee wie ich das Konvergenzverhalten hierbei bestimmen kann.
Was die Teilfolgen betrifft so ist [mm] (a_{2k}) [/mm] = [mm] 2i^{2k}+\bruch{1}{2^{2k}} [/mm] die Teilfolge, bei der  nur reelle Werte rauskommen und [mm] (a_{2k+1}) [/mm] = [mm] 2i^{2k+1}+\bruch{1}{2^{2k+1}} [/mm] dementsprechend die wo komplexe Wert rauskommen.
Hat jemand vielleicht einen Tipp für mich?

LG Loriot95

        
Bezug
Konvergenz komplexe Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Do 10.03.2011
Autor: kamaleonti

Hallo Loriot,
> Untersuchen Sie die Folge [mm](a_{n})_{n}\subseteq \IC[/mm] mit
> [mm]a_{n}:= 2i^{n}+\bruch{1}{2^{n}}[/mm] auf Konvergenz,
> Häufungspunkte und konvergente Teilfolgen. (Geben Sie für
> jeden Häufungspunkt eine gegen ihn konvergente Teilfolge
> an).
>  Guten Tag,
>  
> habe mit dieser Aufgabe so meine Probleme. Habe keine Idee
> wie ich das Konvergenzverhalten hierbei bestimmen kann.
>  Was die Teilfolgen betrifft so ist [mm](a_{2k})[/mm] =
> [mm]2i^{2k}+\bruch{1}{2^{2k}}[/mm] die Teilfolge, bei der  nur
> reelle Werte rauskommen und [mm](a_{2k+1})[/mm] =
> [mm]2i^{2k+1}+\bruch{1}{2^{2k+1}}[/mm] dementsprechend die wo
> komplexe Wert rauskommen.
>  Hat jemand vielleicht einen Tipp für mich?

Der letzte Teil der Folge [mm] \frac{1}{2^n} [/mm] verschwindet für [mm] n\to\infty, [/mm] also ist der erste Teil interessant. Offensichtlich konvergiert die Folge nicht, denn [mm] 2i^{n} [/mm] nimmt zyklisch die Werte 2i, -2, -2i, 2 an. Das sind auch schon die Häufungspunkte. Jetzt sollte es dir nicht schwer fallen, Teilfolgen die gegen diese Werte konvergieren, anzugeben.

>  
> LG Loriot95

Gruß

Bezug
                
Bezug
Konvergenz komplexe Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Do 10.03.2011
Autor: Loriot95

Oh man. Ich steh echt oft aufm Schlauch. Danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]