matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesKonvergenz im IR^n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Konvergenz im IR^n
Konvergenz im IR^n < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz im IR^n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:05 Mo 21.04.2014
Autor: mimo1

Aufgabe
Zeige, dass die Folge [mm] (x_k)_{k \in \IN} [/mm] genau dann bzgl. || * [mm] ||_{\infty} [/mm] gegena [mm] \in \IR^n [/mm] konvergiert, wenn sie bzgl. der eukl. Norm || * [mm] ||_2 [/mm] gegen a konvergiert.

hallo,
stehe total auf dem schlauch und hoffe ihr könnt mir eine starthilfe geben.

Kann ich diese Ungleichung benutzen bzw muss ich sie sogar benutzen? und falls ja wie mach ich dann weiter und wie gehe ich am besten an diese aufgabe heran?:

[mm] ||x||_{\infty} \le ||x||_2 \le \wurzel{n}||x||_{\infty} [/mm]

danke für eure hilfe.

Gruß,
mimo1

        
Bezug
Konvergenz im IR^n: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Mo 21.04.2014
Autor: fred97


> Zeige, dass die Folge [mm](x_k)_{k \in \IN}[/mm] genau dann bzgl. ||
> * [mm]||_{\infty}[/mm] gegena [mm]\in \IR^n[/mm] konvergiert, wenn sie bzgl.
> der eukl. Norm || * [mm]||_2[/mm] gegen a konvergiert.
>  hallo,
> stehe total auf dem schlauch und hoffe ihr könnt mir eine
> starthilfe geben.
>  
> Kann ich diese Ungleichung benutzen bzw muss ich sie sogar
> benutzen?

Ja

>  und falls ja wie mach ich dann weiter und wie
> gehe ich am besten an diese aufgabe heran?:
>  
> [mm]||x||_{\infty} \le ||x||_2 \le \wurzel{n}||x||_{\infty}[/mm]

Es ist



$ [mm] ||x_k-a||_{\infty} \le ||x_k-a||_2 \le \wurzel{n}||x_k-a||_{\infty} [/mm] $  für alle k

FRED

>  
> danke für eure hilfe.
>  
> Gruß,
> mimo1


Bezug
                
Bezug
Konvergenz im IR^n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:01 Di 22.04.2014
Autor: mimo1

ist die aufgabe damit schon bewiesen?

Bezug
                        
Bezug
Konvergenz im IR^n: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Di 22.04.2014
Autor: fred97


> ist die aufgabe damit schon bewiesen?

Na, ja, so gut wie. Ein paar erläuternde Worte solltest Du aber schon spendieren.

FRED


Bezug
                                
Bezug
Konvergenz im IR^n: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 Di 22.04.2014
Autor: mimo1

achso, vielen dank für deine hilfe

gruß
mimo1

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]