matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz elementar beweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Konvergenz elementar beweisen
Konvergenz elementar beweisen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz elementar beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Do 17.05.2007
Autor: EPaulinchen

Aufgabe
Entscheiden sie ob folgende Reihe konvergiert,
ohne die Rechenregeln für Grenzwerte zu benutzen:


[mm] b_{n}= e^{(\pi*n/7*i)} [/mm]


Also elementar bewisen heißt wohl:


[mm] |e^{(\pi*n/7*i)} [/mm] - a |  < [mm] \varepsilon [/mm]    

  [mm] \forall \varepsilon [/mm] > 0

Wie wähle ich das a ?
Ab welchem n soll das dann gelten?

Danke für einen Ansatz.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz elementar beweisen: Reihe?
Status: (Antwort) fertig Status 
Datum: 18:40 Do 17.05.2007
Autor: Loddar

Hallo EPaulinchen!


Ist hier die Konvergenz der Reihe [mm] $\summe_{n=0}^{\infty}b_n$ [/mm] gemeint?

Dann solltest Du mal überprüfen, ob das notwendige Kriterium [mm] $b_n [/mm] \ [mm] \text{ist Nullfolge}$ [/mm] erfüllt ist.


Gruß
Loddar


Bezug
                
Bezug
Konvergenz elementar beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:17 Do 17.05.2007
Autor: EPaulinchen

Aufgabe
Ich weiß nicht was es mit dem 7*i auf sich haben soll.

Sollte es bei komlexen Zahlen nicht exp(i * Winkel ) sein?
Also exp(0) geht natürlich gegen 1.
Aber gilt das auch im Komplexen?

Bezug
                        
Bezug
Konvergenz elementar beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Do 17.05.2007
Autor: leduart

Hallo
Wie heisst denn deine Reihe nun wirklich? so wie Loddar sie hingeschrieben hat? oder geht es um eine Folge?
1/i ist kein Problem, wenn es um komplexe Zahlen geht, denn 1/i=-i
seid ihr denn zur Zeit bei komplexen Zahlen?
Bitte schreib doch die Aufgabe so auf, wie sie euch gestellt wurde und nicht ne verwirrende Kurzfassung, sonst reden wir vielleicht nicht über das Gleiche
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]