Konvergenz eines Integrals < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:20 Fr 08.05.2009 | Autor: | SEBBI001 |
Aufgabe | Es sein k [mm] \in \IN_{0}. [/mm] Zeigen Sie dass das folgende Integral
[mm] \integral_{1}^{\infty}{\bruch{cos^{k}(x)}{x} dx} [/mm] genau dann konvergiert, wenn k ungerade ist. |
Hier bin ich total ratlos. Soll man das k durch ein 2k-1 (für ungerade Zahlen) ersetzen? Aber wenn ich das integriere komme ich immer auf eine Stammfunktion, die für jeden Wert von k divergiert. Bin für jede Anregung dankbar!!!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:08 Fr 08.05.2009 | Autor: | abakus |
> Es sein k [mm]\in \IN_{0}.[/mm] Zeigen Sie dass das folgende
> Integral
> [mm]\integral_{1}^{\infty}{\bruch{cos^{k}(x)}{x} dx}[/mm] genau dann
> konvergiert, wenn k ungerade ist.
> Hier bin ich total ratlos. Soll man das k durch ein 2k-1
> (für ungerade Zahlen) ersetzen? Aber wenn ich das
> integriere komme ich immer auf eine Stammfunktion, die für
> jeden Wert von k divergiert. Bin für jede Anregung
> dankbar!!!
Hallo,
der Funktionsgraph für ungerade k liefert von Nullstelle zu Nullstelle ständig kleiner werdende Flächenstücke, die abwechselnd ober- und unterhalb der x-Achse liegen. Hier hilft das Leibnizkriterium, denn die Summanden (= Teilflächen) alternieren und gehen gegen Null.
Gruß Abakus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:08 Mo 11.05.2009 | Autor: | SEBBI001 |
> Hallo,
> der Funktionsgraph für ungerade k liefert von Nullstelle
> zu Nullstelle ständig kleiner werdende Flächenstücke, die
> abwechselnd ober- und unterhalb der x-Achse liegen. Hier
> hilft das Leibnizkriterium, denn die Summanden (=
> Teilflächen) alternieren und gehen gegen Null.
> Gruß Abakus
>
Gut, aber wie kann ich das konkret hier anwenden. Das Leibnizkriterium gilt ja nur für Reihen, also müsste ich ja aus dem Integral eine Reihe machen, wie geht denn das
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:59 Mo 11.05.2009 | Autor: | abakus |
> > Hallo,
> > der Funktionsgraph für ungerade k liefert von
> Nullstelle
> > zu Nullstelle ständig kleiner werdende Flächenstücke, die
> > abwechselnd ober- und unterhalb der x-Achse liegen. Hier
> > hilft das Leibnizkriterium, denn die Summanden (=
> > Teilflächen) alternieren und gehen gegen Null.
> > Gruß Abakus
> >
> Gut, aber wie kann ich das konkret hier anwenden. Das
> Leibnizkriterium gilt ja nur für Reihen, also müsste ich ja
> aus dem Integral eine Reihe machen, wie geht denn das
Hallo,
du musst zeigen:
1) du addierst unendlich viele Teilflächen
2) die sind abwechselnd positiv und negativ
3) sie werden immer kleiner (und gehen gegen Null)
Gruß Abakus
|
|
|
|