matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKonvergenz einer Reihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Konvergenz einer Reihe
Konvergenz einer Reihe < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Reihe: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:16 Mo 16.01.2006
Autor: Doreen

Aufgabe
Entscheiden sie, ob die Reihe konvergent ist, bestimmen sie gegebenenfalls ihren Reihenwert.

[mm] \summe_{k=1}^{\infty} \bruch{1}{\wurzel{k+1} + \wurzel{k}} [/mm]


Hallo,

wie komme ich bei der Aufgabe zu meinem Ziel?

Ich habe schon ein paar Glieder bestimmt und den Bruch zerlegt
und verschiedene Schreibweisen für die obige Aufgabe ausprobiert
aber ohne Erfolg.

Könnte mir jemand eventuell sagen, was ich hier machen muss?

Aufgrund der vielen Wurzeln dachte ich Wurzelkriterium, aber da weiß ich
nicht, wie man es drauf anwenden könnte...

Für Hilfe vielen Dank im Voraus.
Gruß
Doreen

Diese Frage habe ich in keinen anderem Forum gestellt

        
Bezug
Konvergenz einer Reihe: tipp
Status: (Antwort) fertig Status 
Datum: 15:22 Mo 16.01.2006
Autor: mathmetzsch

Hallo,

hier vielleicht ein Tipp:

Versuche mal den Bruch geeignet zu erweitern, so dass man z.B. eine binomische Formel anwenden könnte...!

Das wurzelkriterium bringt hier nichts, da du ja keine n-ten Wurzeln hast, aber vielleicht ein anderes...!

Viele Grüße
Daniel

Bezug
        
Bezug
Konvergenz einer Reihe: anderer Weg
Status: (Antwort) fertig Status 
Datum: 16:09 Mo 16.01.2006
Autor: statler

Hallo Doreen,

du weißt sicher, daß die harmonische Reihe [mm] \summe_{i=1}^{n} \bruch{1}{i} [/mm] nicht konvergiert.

Nun ist aber
   [mm] \summe_{k=1}^{\infty} \bruch{1}{\wurzel{k+1} + \wurzel{k}} [/mm]
[mm] \ge \summe_{k=1}^{\infty} \bruch{1}{\wurzel{k+1} + \wurzel{k+1}} [/mm]
= [mm] \summe_{k=1}^{\infty} \bruch{1}{2*\wurzel{k+1}} [/mm]
[mm] \ge \bruch{1}{2}*\summe_{k=1}^{\infty} \bruch{1}{k+1} [/mm]
= [mm] \summe_{n=2}^{\infty} \bruch{1}{n} [/mm]

Gruß aus HH-Harburg
Dieter



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]