matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz einer Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenz einer Reihe
Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Reihe: Aufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 10:28 Fr 12.12.2014
Autor: fred97

Ich kanns nicht lassen.... . Wieder ist mir eine reizvolle Aufgabe über den Weg gelaufen:

Aufgabe
Es sei $m [mm] \in \IN$ [/mm] und die Funktion $f: [mm] \IR \to \IR$ [/mm] sei aus der Klasse [mm] C^m(\IR). [/mm]

Weiter gelte [mm] $f^{(j)}(0)=0$ [/mm] für $j=0,...,m-1$ und [mm] $f^{(m)}(0) \ne [/mm] 0$ .

Wir betrachten die Reihe

  [mm] \summe_{n=1}^{\infty}(f(\bruch{1}{n}))^a. [/mm]

Für welche Werte $a [mm] \in [/mm] (0, [mm] \infty)$ [/mm] ist diese Reihe absolut konvergent ?








Gruß FRED

Edit: nachträglich habe ich die Aufgabe leicht modifiziert.

mit der üblichen Bitte an einen der Moderatoren... .

        
Bezug
Konvergenz einer Reihe: Dummyfrage beendet
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:26 Fr 12.12.2014
Autor: Herby

Salut,

eine Dummyfrage :-)

Grüße
Herby

Bezug
        
Bezug
Konvergenz einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:29 Mo 15.12.2014
Autor: fred97


> Ich kanns nicht lassen.... . Wieder ist mir eine reizvolle
> Aufgabe über den Weg gelaufen:
>  
> Es sei [mm]m \in \IN[/mm] und die Funktion [mm]f: \IR \to \IR[/mm] sei aus
> der Klasse [mm]C^m(\IR).[/mm]
>
> Weiter gelte [mm]f^{(j)}(0)=0[/mm] für [mm]j=0,...,m-1[/mm] und [mm]f^{(m)}(0) \ne 0[/mm]
> .
>  
> Wir betrachten die Reihe
>  
> [mm]\summe_{n=1}^{\infty}(f(\bruch{1}{n}))^a.[/mm]
>  
> Für welche Werte [mm]a \in (0, \infty)[/mm]  ist diese absolut
> Reihe konvergent ?
>  
>
>
>
> Gruß FRED
>  
> Edit: nachträglich habe ich die Aufgabe leicht
> modifiziert.
>  
> mit der üblichen Bitte an einen der Moderatoren... .



Da seit 5 Tagen keine Reaktion auf diese Aufgabe kam, hier meine Lösung:

Für $x [mm] \ne [/mm] 0 $ betrachten wir die Funktion [mm] $g(x):=\bruch{f(x)}{x^m}$. [/mm]

Die Voraussetzungen zeigen, dass mit $m$ -facher Anwendung der Regel von de l'Hospital gilt:

   [mm] $\limes_{x \rightarrow 0}g(x)=\limes_{x \rightarrow 0}\bruch{f^{(m)}(x)}{m!}=\bruch{f^{(m)}(0)}{m!}=:c.$ [/mm]

Wir haben also:

   [mm] $\limes_{x \rightarrow 0}|\bruch{f(x)}{x^m}|=|c|>0$. [/mm]

Daher gibt es ein $r>0$ mit:

   $ [mm] \bruch{|c|}{2} \le |\bruch{f(x)}{x^m}| \le [/mm] 2|c|$   für $x [mm] \in [/mm] (-r,r) [mm] \setminus \{0\}$ [/mm]

Wegen $f(0)=0$ folgt somit:

    $ [mm] \bruch{|c|}{2}*|x|^m \le [/mm]  |f(x)| [mm] \le 2|c|*|x|^m$ [/mm]   für $x [mm] \in [/mm] (-r,r) $.

Folglich gibt es ein $N [mm] \in \IN$ [/mm] mit

    $ [mm] \bruch{|c|}{2}*\bruch{1}{n^m}\le |f(\bruch{1}{n})| \le 2|c|*\bruch{1}{n^m}$ [/mm]  für $n>N$.

Für $a>0$ bedeutet dies:

     $ [mm] (\bruch{|c|}{2})^a*\bruch{1}{n^{ma}}\le |f(\bruch{1}{n})|^a \le 2|c|*\bruch{1}{n^{ma}}$ [/mm]  für $n>N$.

Das Majorantenkriterium und die rechte Ungleichung zeigen:

     $ [mm] \summe_{n=1}^{\infty}(f(\bruch{1}{n}))^a [/mm] $ konvergiert absolut für $a> [mm] \bruch{1}{m}.$ [/mm]

Das Minorantenkriterium und die linke Ungleichung zeigen:

     $ [mm] \summe_{n=1}^{\infty}(f(\bruch{1}{n}))^a [/mm] $ konvergiert nicht absolut für  $a [mm] \le \bruch{1}{m}.$ [/mm]


FAZIT: für $a>0$ gilt:


       $ [mm] \summe_{n=1}^{\infty}(f(\bruch{1}{n}))^a [/mm] $ konvergiert absolut    [mm] \gdw [/mm]  $a> [mm] \bruch{1}{m}.$ [/mm]



Eine Anwendung:

Die Reihe $ [mm] \summe_{n=1}^{\infty}(\bruch{1}{n}- \sin(\bruch{1}{n}))^a [/mm] $ konvergiert    [mm] \gdw [/mm]  $a> [mm] \bruch{1}{3}.$ [/mm]

(Man beachte hierbei: [mm] $\bruch{1}{n}- \sin(\bruch{1}{n}) \ge [/mm] 0$  für alle $n [mm] \in \IN$) [/mm]


FRED



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]