matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz einer Potenzreihe ?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Konvergenz einer Potenzreihe ?
Konvergenz einer Potenzreihe ? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Potenzreihe ?: wie geht denn das ... !?
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:45 Fr 05.05.2006
Autor: Julchen01

Aufgabe
In welchen der vier Punkte z = [mm] \wurzel{3} [/mm] - i, - [mm] \wurzel{3} [/mm] + i, 4*i, 1 konvergiert die Potenzreihe [mm] \summe_{n=1}^{\infty} \bruch{(\wurzel{3}+i)^{n}}{n*4^{n}}*z^{n} [/mm] ?

Hallo !

Hab hier einige Problemchen mit dieser komplexen Potenzreihe :-( ...

a) und b) sind mir eigentlich klar, die hab ich auch selbst geschafft. Hab das z eingesetzt, a bissel rumgerechnet, und bekomm dann die harmonische Reihe raus, und die ist divergent.
bei der b) kommt dann ne alternierende harmonische Reihe raus, und die ist nach Leibnizkriterium konvergent.

c) mit z = 4*i : [mm] \summe_{n=1}^{\infty} \bruch{(\wurzel{3}+i)^{n}}{n*4^{n}}*4*i^{n} [/mm] = [mm] \summe_{n=1}^{\infty} \bruch{(\wurzel{3}+i)^{n}*(4i)^{n}}{n*4^{n}} [/mm] = ... = (die [mm] 4^{n} [/mm] rausgekürzt) bleibt am Schluß stehn =  [mm] \summe_{n=1}^{\infty} \bruch{(\wurzel{3}*i - 1)^{n}}{n} [/mm] = [mm] \summe_{n=1}^{\infty} \bruch{1}{n} *{(\wurzel{3}*i - 1)^{n}} [/mm]

So, und hier beissts aus: wie komm ich von hier aus weiter, wie zeig ich, daß das konvergent / divergent ist !?

d) mit z= 1: [mm] \summe_{n=1}^{\infty} \bruch{(\wurzel{3}+i)^{n}}{n*4^{n}} [/mm] = ... = (ebenfalls die [mm] 4^{n} [/mm] im Nenner gekürzt) = [mm] \summe_{n=1}^{\infty} \bruch{1}{n} *{(\bruch{1}{4}\wurzel{3} + \bruch{1}{4} * i)^{n}} [/mm]

Ja, und auch hier: wie komm ich weiter, welche Kriterium muss ich anwenden ? *???*

Wär nett, wenn mir einer bei der Lösung helfen könnte, schon mal jetzt vielen lieben Dank !
Hab sowas noch nie gemacht, kam auch nie in der Vorlesung dran, bzw. wird erst in den nächsten paar Wochen kommen, hab also von dem ganzen Schotter keine große Ahnung ...

Grüße !

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt ...

        
Bezug
Konvergenz einer Potenzreihe ?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:07 Fr 05.05.2006
Autor: felixf

Hallo!

> In welchen der vier Punkte z = [mm]\wurzel{3}[/mm] - i, - [mm]\wurzel{3}[/mm]
> + i, 4*i, 1 konvergiert die Potenzreihe
> [mm]\summe_{n=1}^{\infty} \bruch{(\wurzel{3}+i)^{n}}{n*4^{n}}*z^{n}[/mm]
> ?
>  Hallo !
>
> Hab hier einige Problemchen mit dieser komplexen
> Potenzreihe :-( ...
>  
> a) und b) sind mir eigentlich klar, die hab ich auch selbst
> geschafft. Hab das z eingesetzt, a bissel rumgerechnet, und
> bekomm dann die harmonische Reihe raus, und die ist
> divergent.
> bei der b) kommt dann ne alternierende harmonische Reihe
> raus, und die ist nach Leibnizkriterium konvergent.

Hattet ihr schon den Konvergenzradius? Mit diesen Infos weisst du, dass der Konvergenzradius hier $2 = [mm] |\sqrt{3} [/mm] - i|$ ist. Also konvergiert die Reihe fuer alle $z$ mit $|z| < 2$ und divergiert fuer alle $z$ mit $|z| > 2$.

LG Felix


Bezug
                
Bezug
Konvergenz einer Potenzreihe ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Fr 05.05.2006
Autor: Julchen01


> Hattet ihr schon den Konvergenzradius?

Danke für die schnelle Antwort !

Nein, Konvergenzradius, der Begriff war mir neu ! Hab jetzt bei Google und Wikipedia mal alles gesucht, was damit zu tun hat, aber irgendwie ist es mir nun gar nimmer verständlich ... !? Vielleicht bin ich auch nur ein bisschen schwer von Begriff *g* , oder einfach nur blöd ...

> Mit diesen Infos
> weisst du, dass der Konvergenzradius hier [mm]2 = |\sqrt{3} - i|[/mm]
> ist.

Irgendwie hab ich hier einige Verständnisprobleme ... Nehmen wir mal meinen ersten Punkt zur Untersuchung: Ich hab doch eine Reihe bei meinem ersten Punkt, die lautet:

[mm] \summe_{n=1}^{\infty} \bruch{(\wurzel{3}+i)^{n} * ( \wurzel{3}-i)^{n}}{n\cdot{}4^{n}} [/mm]

Aber wieso ist hier der Konvergenzradius = 2 = [mm] |\sqrt{3} [/mm] - i| ? Wie kann ich das denn sehen ?

Dann wär bei der b) der Konvergenzradius doch auch 2 = |- [mm] \sqrt{3} [/mm] + i| ?

> Also konvergiert die Reihe fuer alle [mm]z[/mm] mit [mm]|z| < 2[/mm] und divergiert fuer alle [mm]z[/mm] mit [mm]|z| > 2[/mm].
>  

Und wie seh ich dann ob das konvergiert, oder divergiert, |z| ist doch hier = 2 ?

Wäre nett, wenn mich hier noch einer ein bisschen aufklären könnte, wäre sehr nett von euch !
Danke schonmal !

Bezug
                        
Bezug
Konvergenz einer Potenzreihe ?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Fr 05.05.2006
Autor: felixf

Hallo Julchen!

> > Hattet ihr schon den Konvergenzradius?
>
> Danke für die schnelle Antwort !
>  
> Nein, Konvergenzradius, der Begriff war mir neu ! Hab jetzt
> bei Google und Wikipedia mal alles gesucht, was damit zu
> tun hat, aber irgendwie ist es mir nun gar nimmer
> verständlich ... !? Vielleicht bin ich auch nur ein
> bisschen schwer von Begriff *g* , oder einfach nur blöd
> ...

Die Frage war nur fuer den Fall gedacht, das ihr das schon in der Vorlesung behandelt habt. In dem Fall koenntest du die Aufgabe damit naemlich schoen zuende bringen. Man kann das ganze aber auch ohne Konvergenzradius loesen!

> > Mit diesen Infos
> > weisst du, dass der Konvergenzradius hier [mm]2 = |\sqrt{3} - i|[/mm]
> > ist.
>
> Irgendwie hab ich hier einige Verständnisprobleme ...

Lass das ganze mit dem Konvergenzradius mal. Bzw. warte bis ihr das in der Vorlesung behandelt habt.

Zu der Reihe in c): Du hast ja [mm] $\sum_{n=1}^\infty \frac{(\sqrt{3} + i)^n}{n 4^n} [/mm] (4 [mm] i)^n [/mm] = [mm] \sum_{n=1}^\infty \frac{(\sqrt{3} i - 1)^n}{n}$ [/mm] vereinfacht. Jetzt schau dir doch mal den Summanden im Betrag an. Wenn die Reihe konvergieren wuerde (auch die ohne Betrag), dann waere dies eine Nullfolge. Und, ist es eine?

Zu der Reihe in d): Benutz doch mal das Wurzelkriterium! Es ist ja [mm] $\sqrt[n]{\left| \frac{(\sqrt{3} + i)^n}{n \cdot 4^n} \right|} [/mm] = [mm] \sqrt[n]{ \frac{2^n}{n \cdot 4^n} } [/mm] = [mm] \frac{1}{2 \sqrt[n]{n}}$. [/mm] Kannst du ueber das Verhalten fuer $n [mm] \to \infty$ [/mm] was aussagen?

LG Felix


Bezug
                
Bezug
Konvergenz einer Potenzreihe ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Do 11.05.2006
Autor: Julchen01

Hi, mal wieder !

Möchte jetzt diese Frage einfach noch mal aufgreifen ! Vielleicht kanns mir ja noch einer erklären !?

Also hab versucht, mir das mit dem Konvergenzradius mal selbst beizubringen (in der Uni durch den Prof. nicht möglich, da dieser einfach nur inkompetent ist ...) . Allerdings komm ich damit nicht so ganz klar, irgendwie ...

Wie kommt man denn hier genau auf diesen Konvergenzradius 2 = [mm] |\sqrt{3} [/mm] - i| ?
Muss ich das hier anwenden : r = [mm] \limes_{n\rightarrow\infty} [/mm] | [mm] \bruch{a_{n}}{a_{n+1}} [/mm] | ?
Jetzt setz ich da mein [mm] a_{n} [/mm] und [mm] a_{n+1} [/mm] ein ?

Wäre nett, wenn mir das einer plausibel machen könnte, wie das geht :-) !

Vielen Dank schon mal jetzt !
Liebe Grüße
Julia

Bezug
                        
Bezug
Konvergenz einer Potenzreihe ?: Einsetzen von a_n
Status: (Antwort) fertig Status 
Datum: 20:39 Do 11.05.2006
Autor: Loddar

Hallo Julchen!


Mit [mm] $a_n$ [/mm] ist hier die aufzusummierende Koeffizienten-Folge gemeint vor dem [mm] $z_n$ [/mm] ; also:

[mm] $a_n [/mm] \ = \ [mm] \bruch{\left( \ \wurzel{3}+i \ \right)^n}{n*4^n}$ [/mm]

Damit gilt auch: [mm] $a_{n+1} [/mm] \ = \ [mm] \bruch{\left( \ \wurzel{3}+i \ \right)^{n+1}}{(n+1)*4^{n+1}}$ [/mm]


Dies setzen wir nun in die Formel für den Konvergenzradius ein:

[mm]r \ := \ \limsup_{n\rightarrow\infty}\left|\bruch{a_{n}}{a_{n+1}}\right|[/mm]


Einfacher ginge es hier mit der anderen Formel (Formel von Cauchy-Hadamard), siehe auch []hier .


Aber bleiben wir bei der von Dir genannten Formel ...

[mm]r \ := \ \limsup_{n\rightarrow\infty}\left|\bruch{a_{n}}{a_{n+1}}\right| \ = \ \limsup_{n\rightarrow\infty}\left|\bruch{\bruch{\left( \ \wurzel{3}+i \ \right)^n}{n*4^n}}{\bruch{\left( \ \wurzel{3}+i \ \right)^{n+1}}{(n+1)*4^{n+1}}}\right| \ = \ ...[/mm]


Kürzen liefert:

[mm]... \ = \ \limsup_{n\rightarrow\infty}\left|\bruch{4*(n+1)}{n*\left( \ \wurzel{3}+i \ \right)}\right| \ = \ \limsup_{n\rightarrow\infty}\left|\bruch{4*(n+1)}{n}\right|*\bruch{1}{\left| \ \wurzel{3}+i \ \right|} \ = \ ...[/mm]


Und nun berechnen wir die einzelnen Beträge bzw. überlegen, welche Betragsstriche entfallen dürfen:

[mm]... \ =\ \limsup_{n\rightarrow\infty}\bruch{4*(n+1)}{n}*\bruch{1}{\wurzel{ \ \left( \ \wurzel{3} \ \right)^2+1^2 \ }} \ = \ \limsup_{n\rightarrow\infty}\bruch{4*(n+1)}{n*2} \ = \ 2*\limsup_{n\rightarrow\infty}\bruch{n+1}{n} \ = \ 2*1 \ = \ 2[/mm]


Nun klar(er) ??


Gruß
Loddar


Bezug
        
Bezug
Konvergenz einer Potenzreihe ?: jetzt probier ichs mal nochmal
Status: (Frage) überfällig Status 
Datum: 23:46 Do 11.05.2006
Autor: Julchen01

Aufgabe
Berechnen Sie den Konvergenzradius der komplexen Potenzreihe [mm] \summe_{k=1}^{\infty} \bruch{2^{k}}{i^{k}*\wurzel{k} }*(z- \bruch{i}{2})^{k} [/mm] .
In welchen der Punkte 0, 1, i, -1, -i, [mm] \bruch{i+1}{3} [/mm] konvergiert sie ?

OK, nachdem ich diese vorherige Aufgabe jezt dann damit ganz gut nachvollziehen konnte, möcht ichs jetzt noch selber mit ner Aufgabe probieren ! Ich hoff mal, daß das auch ganz gut klappt ...
Vielleicht könnt ihr mir hier auch die ein oder andere Hilfestellung geben !?

Ich setz am Anfang wieder mit dieser Formel an:
r := [mm] \limsup_{n\rightarrow\infty}\left|\bruch{a_{n}}{a_{n+1}}\right| [/mm] \ =
Einsetzen und Kürzen wie in der letzten Aufgabe (würd´s ja gern hinschreiben, komm aber nicht so ganz mit dem Formeleditor bei dem Riesen-Teil zurecht) liefert dann:

[mm] |\bruch{i*\wurzel{k+1} }{2*\wurzel{k}} [/mm] | = | [mm] \bruch{i}{2}| [/mm] * | [mm] \bruch{\wurzel{k*(1+1/k)}}{\wurzel{k}}| [/mm] = [mm] |\bruch{i}{2}| [/mm] * [mm] \wurzel{1+ \bruch{1}{k}} [/mm]

1/k geht jetzt bei k --> [mm] \infty [/mm] gegen 0  daraus folgt, es steht nur noch [mm] |\bruch{i}{2}| [/mm] das dran !?
und dann folgt: r= [mm] \bruch{1}{2} [/mm]
Würde das richtig sein !? Oder was hab ich falsch verstanden !? Ok, vielleicht hab ich auch nurn paar Rechenfehler drin ...

Was mach ich jetzt mit meinen gegebenen Punkten ?
Muss ich die jetzt noch in mein z einsetzen und dann das ausrechnen  ? Also z.B. |0 - [mm] \bruch{i}{2}| [/mm] = [mm] \bruch{1}{2} [/mm] = r  ... !?

Oder brauch ich das gar nicht mehr ? Dann würds bei 0 konvergieren, da 0 < r, usw ...
Das versteh ich noch nicht so ganz  ... Wäre nett, wenn mir das noch einer sagen könnte !
Danke !

Liebe Grüße !
Julia

Bezug
                
Bezug
Konvergenz einer Potenzreihe ?: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 So 14.05.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]