matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz einer Folge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergenz einer Folge
Konvergenz einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Folge: Idee
Status: (Frage) beantwortet Status 
Datum: 21:15 Mo 07.05.2012
Autor: rolo4

Aufgabe
Für [mm] n\in \IN [/mm] x>-1 definieren wir
[mm] f_n(x)= (1+x^{n})^{1/n} [/mm] und f(x)=max(1,x)

Zeigen Sie:
a) Für ein beliebiges [mm] \beta>0 [/mm] konvergiert [mm] f_n [/mm] gleichmäßig gegen f bezüglich [mm] x\in[0,\beta] [/mm]
b)Für [mm] x\in[0,\infty] [/mm] existiert punktweise der Grenzwert g(x)= [mm] \limes_{n\rightarrow}fn'(x) [/mm]

Für welche Intervalle [mm] I=[\alpha,\beta] \subset [0,\infty] [/mm] ist die Konvergenz gleichmäßig? Was können Sie über die Grenzfunktion f auf diesen Intervallen aussagen?


Meine Idee für a:

Für die gleichmäßige Konvergenz muss ja gelten: [mm] ||f_n-f||=0 \gdw ||(1(+x^{n})^{1/n}- [/mm] max(1,x)||= 0  [mm] \gdw ||((1+x^{n})^{1/n}||- [/mm] max(1,x)= 0

Außerdem gilt ja: Für [mm] f_n\in(-1,\infty) \limes_{n\rightarrow-1}f_n=1 [/mm] und [mm] \limes_{n\rightarrow\infty}f_n=\infty [/mm]

[mm] f_n [/mm] besitzt also als globales Maximum nach rechts [mm] \alpha [/mm] und nach links 1
dann wird ja sup| [mm] f_n(x) [/mm] | : [mm] \alpha [/mm] für x>1 und 1 für [mm] x\le1 [/mm]

Ist der Ansatz so richtig? Und habt ihr eine Idee wie ich an b) herangehen kann? Vielen Dank

        
Bezug
Konvergenz einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 07:38 Di 08.05.2012
Autor: leduart

Hallo
> Für [mm]n\in \IN[/mm] x>-1 definieren wir
>  [mm]f_n(x)= (1+x^{n})^{1/n}[/mm] und f(x)=max(1,x)
>  
> Zeigen Sie:
> a) Für ein beliebiges [mm]\beta>0[/mm] konvergiert [mm]f_n[/mm]
> gleichmäßig gegen f bezüglich [mm]x\in[0,\beta][/mm]
>  b)Für [mm]x\in[0,\infty][/mm] existiert punktweise der Grenzwert
> g(x)= [mm]\limes_{n\rightarrow}fn'(x)[/mm]
>  
> Für welche Intervalle [mm]I=[\alpha,\beta] \subset [0,\infty][/mm]
> ist die Konvergenz gleichmäßig? Was können Sie über die
> Grenzfunktion f auf diesen Intervallen aussagen?
>  
> Meine Idee für a:
>  
> Für die gleichmäßige Konvergenz muss ja gelten:
> [mm]||f_n-f||=0 \gdw ||(1(+x^{n})^{1/n}-[/mm] max(1,x)||= 0  [mm]\gdw ||((1+x^{n})^{1/n}||-[/mm]
> max(1,x)= 0

ja, das musst du zeigen, aber wohl abhaengig von x die 1 oder x  

> Außerdem gilt ja: Für [mm]f_n\in(-1,\infty) \limes_{n\rightarrow-1}f_n=1[/mm]

da verstehe ich ueberhaupt nicht was du meinst.
was soll [mm] f_n\in(-1,\infty) [/mm]  bedeuten, und was dann [mm] \limes_{n\rightarrow-1}f_n=1[/mm] [/mm] ?  n kann doch nicht gegen -1 laufen

> und [mm]\limes_{n\rightarrow\infty}f_n=\infty[/mm]

und auch das verstehe ich nicht, fuer welchr x soll das gelten?

> [mm]f_n[/mm] besitzt also als globales Maximum nach rechts [mm]\alpha[/mm]

woher kommt das [mm] \alpha [/mm] ploetzlich?

> und nach links 1

was meinst du mit globales max nach links und rechts?

>  dann wird ja sup| [mm]f_n(x)[/mm] | : [mm]\alpha[/mm] für x>1 und 1 für
> [mm]x\le1[/mm]

wo und wie hast du das gezeigt?

> Ist der Ansatz so richtig? Und habt ihr eine Idee wie ich
> an b) herangehen kann?

erstmal [mm] f_n [/mm] differenzieren, findest du ne Grenzfunktion?
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]