matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitKonvergenz einer Folge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Konvergenz einer Folge
Konvergenz einer Folge < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 Di 19.07.2011
Autor: couldbeworse

Aufgabe
Sei [mm]I=[a,b],a Man Zeige:

a) Jede Folge [mm](x_n)[/mm] in [mm]I[/mm], die der Bedingung [mm]x_n_+_1\ge f(x_n)[/mm] für alle [mm]n\in \IN[/mm] genügt, ist konvergent.

b) der Grenzwert [mm]x_0=\lim_{n \to \infty}x_n[/mm] ist Fixpunkt von [mm]f[/mm], das heißt [mm]f(x_0)=x_0[/mm]

Hallo!

Ich habe eine kleine Frage zu dieser Aufgabe. Teil a) hatte ich mir so überlegt, daß aus der Bedingung ja folgt, daß die Folge monoton wachsend ist. Außerdem nimmt die Funktion ihr Maximum an (stetig und abgeschlossenes Intervall), damit ist die Folge durch dieses Maximum beschränkt und somit insgesamt konvergent, da wir uns in einem vollständigen Körper bewegen.
Es ist mir aber überhaupt nicht klar, wieso der Grenzwert ein Fixpunkt ist. Ich würde mich sehr freuen, wenn mir das jemand erklären könnte.

Vielen Dank!

LG couldbeworse

        
Bezug
Konvergenz einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:33 Di 19.07.2011
Autor: couldbeworse

Ok, ich glaube ich hatte das berühmte Brett vorm Kopf...laut Bedingungen gilt ja [mm]x_n_+_1\ge f(x_n) \ge x_n[/mm]. Da f stetig ist bekomme ich für den Grenzübergang [mm]\lim_{n \to \infty}x_n_+_1 \ge \lim_{n \to \infty}f(x_n) \ge \lim_{n \to \infty}x_n[/mm], also [mm]x_0\ge f(x_0)\ge x_0[/mm] und somit [mm]f(x_0)=x_0[/mm]. Stimmt das so?

LG couldbeworse

Bezug
                
Bezug
Konvergenz einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Di 19.07.2011
Autor: Marcel

Hallo,
> Ok, ich glaube ich hatte das berühmte Brett vorm
> Kopf...laut Bedingungen gilt ja [mm]x_n_+_1\ge f(x_n) \ge x_n[/mm].
> Da f stetig ist bekomme ich für den Grenzübergang [mm]\lim_{n \to \infty}x_n_+_1 \ge \lim_{n \to \infty}f(x_n) \ge \lim_{n \to \infty}x_n[/mm],
> also [mm]x_0\ge f(x_0)\ge x_0[/mm] und somit [mm]f(x_0)=x_0[/mm]. Stimmt das
> so?

ja. Bei Dir ist [mm] $x_0=\lim_{n \to \infty}f(x_n)$ [/mm] und damit folgt aus
[mm] $$x_{n+1} \ge f(x_n) \ge x_n$$ [/mm]
somit
[mm] $$x_0=\lim_{n \to \infty}x_{n+1} \ge f(x_0)=\green{f(\lim_{n \to \infty}x_n)=\lim_{n \to \infty}f(x_n)} \ge x_0=\lim_{n \to \infty}x_n\,.$$ [/mm]

Die Stetigkeit von [mm] $f\,$ [/mm] wird im grünmarkierten Teil benutzt. Ein wenig wichtig ist es noch, zu bemerken, dass der Grenzwert [mm] $x_0$ [/mm] der Folge [mm] $(x_n)_n$ [/mm] wegen der Abgeschlossenheit von [mm] $I\,$ [/mm] auch [mm] $x_0 \in [/mm] I$ erfüllt. Andererseits wäre [mm] $f(x_0)$ [/mm] ja so vielleicht erstmal (noch) nicht definiert. (Wäre [mm] $x_0 \notin I\,,$ [/mm] so hätte man vielleicht noch den Umstand, [mm] $f(x_0)$ [/mm] "möglichst sinnvoll zu definieren" (was immer das auch bedeuten kann/könnte) und [mm] $f\,$ [/mm] auf $I [mm] \cup\{x_0\}$ [/mm] zu erweitern.)

Gruß,
Marcel

Bezug
                        
Bezug
Konvergenz einer Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:58 Di 19.07.2011
Autor: couldbeworse

Hallo Marcel,

ganz herzlichen Dank für die ausführliche Antwort!

LG couldbeworse

Bezug
        
Bezug
Konvergenz einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 Di 19.07.2011
Autor: Marcel

Hallo,

> Sei [mm]I=[a,b],a
> sei stetig und für alle [mm]x\in I[/mm] gelte [mm]f(x)\ge x[/mm].
>  Man
> Zeige:
>  
> a) Jede Folge [mm](x_n)[/mm] in [mm]I[/mm], die der Bedingung [mm]x_n_+_1\ge f(x_n)[/mm]
> für alle [mm]n\in \IN[/mm] genügt, ist konvergent.
>  
> b) der Grenzwert [mm]x_0=\lim_{n \to \infty}x_n[/mm] ist Fixpunkt
> von [mm]f[/mm], das heißt [mm]f(x_0)=x_0[/mm]
>  Hallo!
>  
> Ich habe eine kleine Frage zu dieser Aufgabe. Teil a) hatte
> ich mir so überlegt, daß aus der Bedingung ja folgt, daß
> die Folge monoton wachsend ist.

in der Tat:
Für jedes natürliche [mm] $n\,$ [/mm] gilt
[mm] $$x_{n+1} \ge f(x_n) \ge x_n\,,$$ [/mm]
weil die erste Beziehung nach der Voraussetzung an die Folge [mm] $(x_n)_n$ [/mm] gilt und die zweite wegen der Voraussetzung an [mm] $f\,.$ [/mm]

> Außerdem nimmt die
> Funktion ihr Maximum an (stetig und abgeschlossenes
> Intervall), damit ist die Folge durch dieses Maximum
> beschränkt und somit insgesamt konvergent, da wir uns in
> einem vollständigen Körper bewegen.

Genauso sieht es aus. Formal: [mm] $(x_n)_n$ [/mm] ist monoton wachsend und durch
[mm] $$M:=\text{sup}\{f(i): i \in I\}=\text{max}\{f(i); i \in I\} [/mm] < [mm] \infty$$ [/mm]
nach oben beschränkt. Nach dem Hauptsatz über monotone Folgen daher konvergent. (Dass das Supremum ein Maximum ist, ergibt sich, wie Du gesagt hast, aus der allgemeineren Tatsache, dass stetige Funktionen auf kompakten Mengen ihr Maximum annehmen. Bei Dir ist [mm] $I\,$ [/mm] beschränkt und abgeschlossen, also kompakt, und [mm] $f\,: [/mm] I [mm] \to \IR$ [/mm] ja stetig, so dass $M [mm] \in \IR\,.$) [/mm]

>  Es ist mir aber überhaupt nicht klar, wieso der Grenzwert
> ein Fixpunkt ist. Ich würde mich sehr freuen, wenn mir das
> jemand erklären könnte.

Setze [mm] $x_\infty:=\lim_{n \to \infty} x_n\,.$ [/mm] Dann ist
[mm] $$f(x_\infty)=f(\lim_{n \to \infty}x_n)$$ [/mm]
per Definitionem und unter Beachtung von [mm] $x_\infty \in [/mm] I$ (beachte: [mm] $(x_n)_n$ [/mm] war ja Folge in [mm] $I\,\,,$ [/mm] die wir oben als konvergent erkannt haben und [mm] $I\,$ [/mm] ist insbesondere abgeschlossen).

Die Stetigkeit von [mm] $f\,$ [/mm] sagt nun, dass Du "den Limes rausziehen darfst":
[mm] $$\ldots=\lim_{n \to \infty}f(x_n)\,.$$ [/mm]

Und naja: Oben hattest Du doch schonmal gesehen:
[mm] $$x_{n+1} \ge f(x_n) \ge x_n\,.$$ [/mm]

Läßt Du dabei mal $n [mm] \to \infty$ [/mm] laufen und benutzt das Einschließkriterium unter Beachtung von [mm] $x_{n+1} \to x_\infty$ [/mm] ($n [mm] \to \infty$) [/mm] (jede Teilfolge einer konvergenten Folge konvergiert in einem metrischen Raum gegen den gleichen Grenzwert wie die konvergente Ausgangsfolge), so siehst Du schlussendlich
[mm] $$x_\infty \ge \lim_{n \to \infty}f(x_n)=f(x_\infty) \ge x_\infty\,.$$ [/mm]

Also [mm] $f(x_\infty)=x_\infty$ [/mm] (mit einem [mm] $x_\infty \in [/mm] I$).

Viele Grüße,
Marcel

Bezug
        
Bezug
Konvergenz einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 10:43 Mi 20.07.2011
Autor: fred97

Zur Beschränktheit:

Es ist doch I=[a,b] und  $ [mm] (x_n) [/mm] $ eine Folge in I. Dann gilt:

              $a [mm] \le x_n \le [/mm] b$  für alle n.

FRED

Bezug
                
Bezug
Konvergenz einer Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:53 Mi 20.07.2011
Autor: Marcel

Hallo Fred,

> Zur Beschränktheit:
>  
> Es ist doch I=[a,b] und  [mm](x_n)[/mm] eine Folge in I. Dann gilt:
>  
> [mm]a \le x_n \le b[/mm]  für alle n.

natürlich. Da habe ich mal wieder mit Kanonen auf Spatzen geschossen (die armen Tiere^^).

Die Ergebnisse bleiben aber zum Glück trotzdem korrekt. Und wenn ich das richtig sehe, brauchen wir auch nur die "nach oben hin Abgeschlossenheit" des Intervalls (falls die Folge gegen [mm] $b\,$ [/mm] konvergiert, sollte [mm] $b\,$ [/mm] natürlich auch im Definitionsbereich von [mm] $f\,$ [/mm] liegen). Denn mit [mm] $I=(a,b]\,$ [/mm] geht alles genauso, in meiner Argumentation würde ich dann aber sagen, dass [mm] $f\,$ [/mm] eingeschränkt auf [mm] $[x_1,b]\,$ [/mm] beschränkt ist. Solche "Kniffe" braucht man da aber nicht, wenn man deinen Hinweis bedenkt, denn wenn alle [mm] $x_n \in [/mm] (a,b]$ liegen, dann gilt natürlich
$$a < [mm] x_n \le [/mm] b$$
für alle [mm] $n\,$ [/mm] und die Beschränktheit ist sofort offensichtlich.

Naja, während Du den Nagel elgant mit einem kleinen Hämmerchen in die Wand klopfst, komm' ich direkt mit einem Vorschlaghammer ^^

Zum Glück führt dennoch beides zum richtigen Ergebnis :-)

Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]