matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz einer Folge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergenz einer Folge
Konvergenz einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Folge: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:37 Mo 06.11.2006
Autor: uxo

Aufgabe
[mm] a_n [/mm] = [mm] \bruch{(n+1)(n+3)}{n+1} [/mm] - [mm] \bruch{n^3}{n^2-1} [/mm]

Hallo liebe Mitglieder!

Als zweites und letztes (versprochen!) soll ich nun obenstehende Folge auf Konvergenz und Monotonie untersuchen, und den Häufungspunkt angeben.
Dazu bin ich wie folgt vorgegangen:

Grenzwertberechnung:

[mm] a_n [/mm] = [mm] \bruch{(n+1)(n+3)}{n+1} [/mm] - [mm] \bruch{n^3}{n^2-1} [/mm]

[mm] a_n [/mm] = [mm] \bruch{(n^2+2n-3)(n^2-1)-n^3(n+1)}{(n+1)(n^2-1)} [/mm]

[mm] a_n [/mm] = [mm] \bruch{n^4-n^2+2n^3-2n-3n^2+3-n^4-n^3}{(n+1)(n^2-1)} [/mm]

[mm] a_n [/mm] = [mm] \bruch{n^3-4n^2-2n+3}{n^3+n^2-n-1} [/mm]

[mm] a_n [/mm] = [mm] \bruch{1-\bruch{4}{n} - \bruch{2}{n^2} + \bruch{3}{n^3}}{1 + \bruch{1}{n} - \bruch{1}{n^2} - \bruch{1}{n^3}} [/mm]

Damit erhalte ich als Grenzwert:

[mm] \limes_{n\rightarrow\infty} a_n [/mm] = 1

Die Monotonie zeige ich, indem ich annehme, daß [mm] a_n \le a_{n+1} [/mm] :

Zuerst partialzerlege ich den Bruch [mm] a_n [/mm] = [mm] \bruch{n^3-4n^2-2n+3}{n^3+n^2-n-1} [/mm] und erhalte 1 - [mm] \bruch{5n-4}{n^2-1} [/mm]

1 - [mm] \bruch{5n-4}{n^2-1} \ge [/mm] 1 - [mm] \bruch{5n+1}{n^2+2n} [/mm]

[mm] (5n-4)(n^2+2n) \ge (5n+1)(n^2-1) [/mm]
[mm] 5n^3+10n^2-4n^2-8n \ge 5n^3-5n+n^2-1 [/mm]
[mm] 6n^2-8n \ge n^2-5n-1 [/mm]
[mm] 5n^2-3n \ge -1 [/mm]

Wenn ich diese Quadratische Ungleichung jetzt löse, erhalte ich für [mm] n_1 [/mm] ~ 6 und für [mm] n_2 [/mm] ~ -5.
Aber was sagt mir das jetz bez. der Monotonie?

Nicht viel besser ergeht es mir beim Versuch, die Konvergenz der Folge zu beweisen:

| [mm] a_n [/mm] - a | < [mm] \epsilon [/mm]

| 1 - [mm] \bruch{5n-4}{n^2-1} [/mm] - 1 | < [mm] \epsilon [/mm]

| - [mm] \bruch{5n-4}{n^2-1} [/mm] | < [mm] \epsilon [/mm]

Für [mm] n > 1 [/mm] :

[mm] \bruch{5n-4}{n^2-1} < \epsilon [/mm]

[mm] \bruch{5-\bruch{4}{n}}{n-\bruch{1}{n}} < \epsilon [/mm]

[mm] 5 < \epsilon(n-\bruch{1}{n})+\bruch{4}{n} [/mm]

[mm] \bruch{5}{\epsilon} < n-\bruch{1}{n}+\bruch{4}{\epsilon n} [/mm]

[mm] \bruch{5}{\epsilon} < \bruch{1}{n}(n^2-1+\bruch{4}{\epsilon} [/mm]

Hier komme ich nicht mehr weiter.
Würde mich sehr über Eure Hilfe freuen,

liebe Grüße,
Thomas.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz einer Folge: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:16 Mo 06.11.2006
Autor: luis52

Hallo uxo,

warum kuerzt du nicht beim ersten Summand $(n+1)$ ?
Wenn ich mich nicht irre, erhaelt man so [mm] $a_n=(3n^2-n-3)/(n^2-1)$. [/mm]


hth


Bezug
        
Bezug
Konvergenz einer Folge: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Do 09.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]