matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz einer Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Konvergenz einer Folge
Konvergenz einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Folge: Tipp
Status: (Frage) beantwortet Status 
Datum: 08:21 Mo 08.12.2014
Autor: mathenoob3000

Hi habe ein Problem mit folgender Aufgabe

Konvergiert die Folge [mm] (a_{n+1} [/mm] - [mm] a_n) [/mm] so konvergiert auch die Folge [mm] (\frac{a_n}{n}) [/mm]

Leider weiss ich nicht mal wie ich genau anfangen soll, kann mir vllt jemand einen Tipp geben


vg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 09:06 Mo 08.12.2014
Autor: fred97


> Hi habe ein Problem mit folgender Aufgabe
>
> Konvergiert die Folge [mm](a_{n+1}[/mm] - [mm]a_n)[/mm] so konvergiert auch
> die Folge [mm](\frac{a_n}{n})[/mm]
>  
> Leider weiss ich nicht mal wie ich genau anfangen soll,
> kann mir vllt jemand einen Tipp geben

Setze [mm] c_n:=a_{n+1}-a_n. [/mm] Nun sei [mm] c:=\limes_{n\rightarrow\infty}c_n. [/mm]

Nach dem Cauchyschen Grenzwertsatz (http://de.wikipedia.org/wiki/Cauchyscher_Grenzwertsatz) gilt:

    [mm] $\frac{1}{n}\sum_{i=1}^n c_i \to [/mm] c$

Berechne mal [mm] \frac{1}{n}\sum_{i=1}^n c_i. [/mm]

FRED

>  
>
> vg
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Konvergenz einer Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:23 Mo 08.12.2014
Autor: mathenoob3000

Also so ganz kapier ich das leider nicht,

wenn ich jetzt für $ [mm] \frac{1}{n}\sum_{i=1}^n c_i. [/mm] $

einfach die Defintion von dir einsetze dann erhalte ich ja:

$ [mm] \frac{1}{n}\sum_{i=1}^n (a_{i+1}-a_i). [/mm] $

aber jetzt weiss ich wieder nicht weiter :(

ok ne wenn ich die Summe berechne sollte

$ [mm] \frac{1}{n}(a_{n+1} [/mm] - [mm] a_1) [/mm] $

rauskommen, richtig?



Bezug
                        
Bezug
Konvergenz einer Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:29 Mo 08.12.2014
Autor: fred97


> Also so ganz kapier ich das leider nicht,
>  
> wenn ich jetzt für [mm]\frac{1}{n}\sum_{i=1}^n c_i.[/mm]
>  
> einfach die Defintion von dir einsetze dann erhalte ich
> ja:
>  
> [mm]\frac{1}{n}\sum_{i=1}^n (a_{i+1}-a_i).[/mm]
>  
> aber jetzt weiss ich wieder nicht weiter :(
>  
> ok ne wenn ich die Summe berechne sollte
>  
> [mm]\frac{1}{n}(a_{n+1} - a_1)[/mm]
>  
> rauskommen, richtig?

Ja. und was macht die Folge [mm](\frac{1}{n}(a_{n+1} - a_1))[/mm]

nach dem Cauchyschen Grenzwertsatz ?

FRED

>  
>  


Bezug
                                
Bezug
Konvergenz einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:51 Mo 08.12.2014
Autor: mathenoob3000

Naja diese konvergiert gegen wieder gegen den gleichen Grenzwert.

aber wie komm ich jetzt darauf dass die Folge [mm] \frac{a_n}{n} [/mm] auch gegen den Grenzwert konvergiert.

Wenn a der Grenzwert ist dann hab ich jetzt das:

| [mm] \frac{1}{n}(a_{n+1} [/mm] - [mm] a_n) [/mm] - a | < [mm] \epsilon [/mm] fuer [mm] \epsilon [/mm] > 0

edit: i

Bezug
                                        
Bezug
Konvergenz einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 11:59 Mo 08.12.2014
Autor: fred97


> Naja diese konvergiert gegen wieder gegen den gleichen
> Grenzwert.
>  
> aber wie komm ich jetzt darauf dass die Folge [mm]\frac{a_n}{n}[/mm]
> auch gegen den Grenzwert konvergiert.
>  
> Wenn a der Grenzwert ist dann hab ich jetzt das:

Den Grenzwert habe ich oben c genannt !


>  
> | [mm]\frac{1}{n}(a_{n+1}[/mm] - [mm]a_n)[/mm] - a | < [mm]\epsilon[/mm] fuer [mm]\epsilon[/mm]
> > 0
>  
> edit: i

Wegen [mm] \bruch{a_1}{n} \to [/mm] 0 folgt

    [mm] \bruch{a_{n+1}}{n} \to [/mm] c

und damit

   [mm] \bruch{a_{n+1}}{n+1} [/mm] = [mm] \bruch{a_{n+1}}{n} [/mm] * [mm] \bruch{n}{n+1} \to [/mm] c.

Fazit:

    [mm] \bruch{a_{n}}{n} \to [/mm] c.

FRED


Bezug
                                                
Bezug
Konvergenz einer Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:10 Mo 08.12.2014
Autor: mathenoob3000

Vielen vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]