matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz der p-Norm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Konvergenz der p-Norm
Konvergenz der p-Norm < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz der p-Norm: Konvergenzbeweis
Status: (Frage) beantwortet Status 
Datum: 18:08 Fr 26.04.2013
Autor: nbt

Aufgabe
Zeigen Sie für [mm]n\in\IN[/mm] und [mm]f\in\IK^n[/mm]:
[mm]\parallel f \parallel_p \to \parallel f \parallel_\infty[/mm] für [mm]p\to\infty[/mm]

Hi,
Ich hab bisher leider nur den Standardansatz:
Zu beweisen ist also: [mm]\forall\epsilon>0\exists q\in\IN\forall p>q: |\parallel f \parallel_p - \parallel f \parallel_\infty|= |(\summe_{i=0}^{\infty}|f(i)|^p)^{\frac{1}{p}}-sup|f(i)||<\epsilon[/mm]
Mein Problem is, dass nicht gegeben ist, ob [mm]f[/mm] aus dem [mm]l^p[/mm] Raum ist oder nicht. Wenn die Summe dann divergieren sollte, seh ich auch ned ganz ein, warum der Abstand der Reihe zum Supremum der einzelnen Folgenglieder [mm]f(i)[/mm] beliebig klein werden kann. Es ist ja nicht gesagt, dass die Folge der f(i)'s selber divergiert.
Wär super, wenn mir jemand einen Denkanstoß gibt.
Danke für die Hilfe,
nbt

        
Bezug
Konvergenz der p-Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Fr 26.04.2013
Autor: schachuzipus

Hallo nbt,

> Zeigen Sie für [mm]n\in\IN[/mm] und [mm]f\in\IK^n[/mm]:
> [mm]\parallel f \parallel_p \to \parallel f \parallel_\infty[/mm]
> für [mm]p\to\infty[/mm]
> Hi,
> Ich hab bisher leider nur den Standardansatz:
> Zu beweisen ist also: [mm]\forall\epsilon>0\exists q\in\IN\forall p>q: |\parallel f \parallel_p - \parallel f \parallel_\infty|= |(\summe_{i=0}^{\infty}|f(i)|^p)^{\frac{1}{p}}-sup|f(i)||<\epsilon[/mm]

>

> Mein Problem is, dass nicht gegeben ist, ob [mm]f[/mm] aus dem [mm]l^p[/mm]
> Raum ist oder nicht. Wenn die Summe dann divergieren
> sollte, seh ich auch ned ganz ein, warum der Abstand der
> Reihe zum Supremum der einzelnen Folgenglieder [mm]f(i)[/mm]
> beliebig klein werden kann. Es ist ja nicht gesagt, dass
> die Folge der f(i)'s selber divergiert.
> Wär super, wenn mir jemand einen Denkanstoß gibt.
> Danke für die Hilfe,

Im [mm]\IK^n[/mm] ist doch die Supremumsnorm auch Maximumnorm, also [mm]||f||_{\infty}=\max\limits_{i=1,..,n}|f_i|[/mm]

Weiter ist [mm]||f||_{\infty}^p\le\sum\limits_{i=1}^n|f_i|^p\le n\cdot{}||f||_{\infty}[/mm]

Wieso? Und hilft dir das weiter?

> nbt

Gruß

schachuzipus

Bezug
                
Bezug
Konvergenz der p-Norm: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:12 Sa 27.04.2013
Autor: nbt

Sollte es nicht besser heißen:
[mm]\parallel f \parallel_\infty^p\le\summe_{i=1}^{n}|f(i)|^ p\le n\parallel f \parallel_\infty^p[/mm] also mit einem p in der Potenz auf der rechten Seite?
Dann ergibt auch alles Sinn:
[mm]\parallel f \parallel_\infty^p\le\summe_{i=1}^{n}|f(i)|^ p[/mm]  (*) weil es in der Reihe ein [mm]j\in\IN[/mm] gibt, mit [mm]f(j)=max|f(i)|[/mm]. Durch Potenzieren mit p>0 verändert sich nix. Die anderen Summanden sind auch nur positiv, also ist die erste Ungleichung klar.
Die zweite Ungleichung
[mm]\summe_{i=1}^{n}|f(i)|^ p\le n\parallel f \parallel_\infty^p[/mm]  (**) ergibt auch Sinn weil [mm]n\parallel f\parallel_\infty^p=\summe_{i=1}^{n}(\parallel f\parallel_infty^p)=\summe_{i=1}^{n}(max |f(i)|^p)[/mm] natürlich größer ist als [mm]\summe_{i=1}^{n}|f(i)|^ p[/mm].
Aber die zweite Ungleichung hilft nicht viel, weil n ja unendlich groß ist und damit die Aussage der Ungleichung trivial ist. Die erste Ungleichung hat mir insofern geholfen, als dass man beim Abschätzen die Betragsstriche weglassen kann, da folgt, dass [mm]\summe_{i=1}^{\infty}|f(i)|^p-\parallel f\parallel_\infty^p\ge0\gdw(\summe_{i=1}^{\infty}|f(i)|^p)^{\frac{1}{p}}-\parallel f\parallel_\infty\ge0[/mm].

Bezug
                        
Bezug
Konvergenz der p-Norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:35 Sa 27.04.2013
Autor: nbt

Oh mann, hab erst einen Leichtsinnsfehler gemacht, jetz kapier ich Deine Hilfestellung:
[mm]\parallel f\parallel_\infty^p\le\summe_{i=1}^{n}|f(i)|^p\le n\parallel f\parallel_\infty^p \gdw\parallel f\parallel_\infty\le(\summe_{i=1}^{n}|f(i)|^p)^\frac{1}{p}\le n^\frac{1}{p}\parallel f\parallel_\infty \gdw\parallel f\parallel_\infty\le\limes_{p\rightarrow\infty}(\summe_{i=1}^{n}|f(i)|^p)^\frac{1}{p}\le\parallel f\parallel_\infty[/mm].
Vielen Dank!

Bezug
                                
Bezug
Konvergenz der p-Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 So 28.04.2013
Autor: fred97


> Oh mann, hab erst einen Leichtsinnsfehler gemacht, jetz
> kapier ich Deine Hilfestellung:
>  [mm]\parallel f\parallel_\infty^p\le\summe_{i=1}^{n}|f(i)|^p\le n\parallel f\parallel_\infty^p \gdw\parallel f\parallel_\infty\le(\summe_{i=1}^{n}|f(i)|^p)^\frac{1}{p}\le n^\frac{1}{p}\parallel f\parallel_\infty \gdw\parallel f\parallel_\infty\le\limes_{p\rightarrow\infty}(\summe_{i=1}^{n}|f(i)|^p)^\frac{1}{p}\le\parallel f\parallel_\infty[/mm].
>  
> Vielen Dank!

Wenn Du aus dem letzten [mm] \gdw [/mm] ein [mm] \Rightarrow [/mm] machst, ist es O.K.

FRED


Bezug
                        
Bezug
Konvergenz der p-Norm: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mo 29.04.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]