matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz der Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenz der Folge
Konvergenz der Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz der Folge: Ansatz
Status: (Frage) beantwortet Status 
Datum: 23:31 Do 07.05.2015
Autor: canyakan95

Aufgabe
Prüfen sie auf Konvergenz und geben sie ggf Grenzwert an (mit Beweis) .
[mm] \summe_{i=1}^{\infty} ((1+\bruch{1}{2n})^n-\bruch{5}{4})^n [/mm]


Hallo wie kann ich hier am besten vorgehen hoffe ihr könnt mir zeigen wie das geht..Ich glaube man kann hier das Wurzelkriterium anwenden, aber ich weis leider nicht wie..

Mfg

        
Bezug
Konvergenz der Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 01:00 Fr 08.05.2015
Autor: reverend

Hallo canyakan,

naja, geh doch mal ganz "mechanisch" vor.

> Prüfen sie auf Konvergenz und geben sie ggf Grenzwert an
> (mit Beweis) .
>  [mm]\summe_{i=1}^{\infty} ((1+\bruch{1}{2n})^n-\bruch{5}{4})^n[/mm]
>  
> Hallo wie kann ich hier am besten vorgehen hoffe ihr könnt
> mir zeigen wie das geht..Ich glaube man kann hier das
> Wurzelkriterium anwenden, aber ich weis leider nicht wie..

Tja, was ist denn [mm] \wurzel[n]{((1+\bruch{1}{2n})^n-\bruch{5}{4})^n} [/mm] ?

Das solltest Du leicht bestimmen können. Und danach mach Dich an den Grenzwert für [mm] n\to\infty. [/mm]

Dabei helfen wir Dir gern weiter. Aber erstmal bist Du dran.

Im übrigen ist es oft gut, sich erstmal die Definitionen (hier: Wurzelkriterium) klar zu machen, wenn man keinen Ansatz findet. Was muss für dieses Kriterium erfüllt sein, und was besagt es dann?

Tipp: die Reihe ist konvergent, und das ist mit dem Wurzelkriterium gut zu zeigen.

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]