matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKonvergenz Fresnel-Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Konvergenz Fresnel-Integral
Konvergenz Fresnel-Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Fresnel-Integral: Frage
Status: (Frage) beantwortet Status 
Datum: 16:03 Di 08.02.2005
Autor: sieggie

Hallo ich soll zeigen, dass das folgende Integral konvergiert:

[mm] \integral_{0}^{ \infty} [/mm] {sin [mm] t^{2} [/mm] dt}

ich habe mir überlegt, dass man das über die summe :

[mm] \summe_{i=0}^{\infty} [/mm] sin [mm] t^{2} [/mm]

erklären kann und dass  [mm] \summe_{i=0}^{\infty} [/mm] sin [mm] t^{2} [/mm] =  
[mm] \summe_{i=0}^{\infty} [/mm] sin x für x = [mm] t^{2} [/mm]

nun meine frage: wie kann ich beweisen, dass
[mm] \summe_{i=0}^{\infty} [/mm] sin x = 0 ist.

vielen dank im vorraus für eine hoffentlich schnelle hilfe

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz Fresnel-Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:39 Di 08.02.2005
Autor: andreas

hallo

> ch soll zeigen, dass das folgende Integral
> konvergiert:
>
> [mm]\integral_{0}^{ \infty} {sin t^{2} dt} [/mm]

sagt dir das dirichlet-kriterium etwas? damit sollte es funktionieren. substituiere zuerst [m] u = t^2 [/m] so erhälst du

[m] \frac{1}{2} \int_0^\infty \frac{\sin u}{\sqrt{u}} \, \mathrm{d}u [/m]

mache dir zuerst klar, dass das intervall [m] [0,1] [/m] keine probleme macht, da die funktion in $0$ stetig ergänzbar ist und zeige nun, dass das integral [m] \int_1^x \sin u \, \mathrm{d}u [/m] beschränkt ist (das geht durch einfache integration) und dass die funktion [m] \frac{1}{\sqrt{u}} [/m] monoton gegen null fällt (für [m] u \to \infty [/m]) jetzt sind die vorrausstzungen für das dirichlet-kriterium erfüllt!


> ich habe mir überlegt, dass man das über die summe :
>  
> [mm]\summe_{i=0}^{\infty}[/mm] sin [mm]t^{2} [/mm]
>  
> erklären kann

ich befürchte solche kriterien darf man nur bei monoton wachsenden oder fallenden funktionen anwenden, das ist hier aber ja nicht der fall...

> und dass  [mm]\summe_{i=0}^{\infty}[/mm] sin [mm]t^{2}[/mm] =  
>
> [mm]\summe_{i=0}^{\infty}[/mm] sin x für x = [mm]t^{2} [/mm]
>  
> nun meine frage: wie kann ich beweisen, dass
>
> [mm]\summe_{i=0}^{\infty}[/mm] sin x = 0 ist.

bist du bei dieser aussage sicher? ich kann das zwar nicht beweisen, bin mit aber recht sicher, dass der reihenwert nicht $0$ ist! (der wert des oben genannten integrals ist [m] \sqrt{\frac{\pi}{8}} [/m] - was man mit etwas funktionentheorie berechnen kann ...)


hoffe das hilft dir erstmal weiter, wenn nicht kannst du dich ja nochmal melden.


grüße
andreas

Bezug
                
Bezug
Konvergenz Fresnel-Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:10 Mi 09.02.2005
Autor: sieggie

Danke, hat mir schon ein wenig geholfen und mich von meinem falschen weg abgebracht.
mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]