matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz Folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenz Folgen
Konvergenz Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Folgen: Korrektur, Tipp
Status: (Frage) beantwortet Status 
Datum: 13:51 Sa 07.11.2009
Autor: aly19

Aufgabe
Bestimmen Sie falls möglich, den Grenzwert von:
[mm] (a_n)_{n\in\IN} [/mm] mit [mm] a_n=(-\bruch{1}{2})^{n}(2+3/n) [/mm]

Also der erste Faktor divergiert ja, aber der zweite konvergiert ja gegen 2. Wenn man einen divergierenden und einen konvergierenden Faktor hat, kann man dann einfach sagen die Folge divergiert, wegen [mm] (-1)^{n}?? [/mm]
Oder ist das nicht immer so?
Vielen Dank schonmal.

        
Bezug
Konvergenz Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:57 Sa 07.11.2009
Autor: schachuzipus

Hallo aly19,

> Bestimmen Sie falls möglich, den Grenzwert von:
>  [mm](a_n)_{n\in\IN}[/mm] mit [mm]a_n=(-\bruch{1}{2})^{n}(2+3/n)[/mm]

>  
> Also der erste Faktor divergiert ja, [notok]

Das ist doch von der Form [mm] $q^n$ [/mm] mit [mm] $|q|=\frac{1}{2}<1$, [/mm] das konvergiert doch gegen 0!

> aber der zweite
> konvergiert ja gegen 2.[ok] Wenn man einen divergierenden und
> einen konvergierenden Faktor hat, kann man dann einfach
> sagen die Folge divergiert, wegen [mm](-1)^{n}??[/mm]
> Oder ist das nicht immer so?

Nein, es ist nicht zwingend divergente Folge [mm] \cdot{} [/mm] konvergente Folge = divergente Folge.

Nimm [mm] $a_n=(-1)^n, b_n=1/n$, [/mm] das Produkt konvergiert gegen 0

>  Vielen Dank schonmal.  

Hier hast du zwei konvergente Folgen, eine konvergiert gegen 0, die andere gegen 2, deren Produkt gem. GW-Sätzen also gegen [mm] $0\cdot{}2=0$ [/mm]


Gruß

schachuzipus

Bezug
                
Bezug
Konvergenz Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:09 Sa 07.11.2009
Autor: aly19

Hey danke, hab das gar nicht gesehen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]