matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz/Divergenz v. Folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenz/Divergenz v. Folgen
Konvergenz/Divergenz v. Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz/Divergenz v. Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Di 13.12.2011
Autor: piet86

Aufgabe
Untersuchen Sie, ob die Folgen [mm] (a_{n}) [/mm] (mit n [mm] \in \IN) [/mm] konvergieren, und bestimmen Sie gegebenenfalls deren Grenzwert.

a)  [mm] (a_{n})=\bruch{3^{n}}{2^{n+1}+n^{-1}} [/mm]

b)  [mm] (a_{n})=\bruch{n}{e^{n+1}} [/mm]

zu a) [mm] (a_{n})=\bruch{3^{n}}{2^{n+1}+n^{-1}} [/mm]
kann ich auch so schreiben:
[mm] (a_{n})=\bruch{3^{n}}{2^{n}*2+n^{-1}} [/mm]

[mm] \limes_{n\rightarrow\infty}\bruch{3^{n}}{2^{n}*2+n^{-1}} [/mm]

[mm] =\limes_{n\rightarrow\infty}\bruch{3^{n}}{2^{n}*2} [/mm]

[mm] \limes_{n\rightarrow\infty}(\bruch{3}{2})^{n}*\bruch{1}{2} [/mm]

Mein Problem ist, dass [mm] \limes_{n\rightarrow\infty}(\bruch{3}{2})^{n}=\infty [/mm]

[mm] \limes_{n\rightarrow\infty}\bruch{1}{2}=\bruch{1}{2} [/mm]

Ich kann aber nicht [mm] \infty*\bruch{1}{2} [/mm] rechnen
Wie mache ich es richtig?

Zu b)
[mm] (a_{n})=\bruch{n}{e^{n+1}} [/mm]
kann ich auch so schreiben
[mm] \limes_{n\rightarrow\infty} \bruch{1} {e^{n}}*\bruch{n}{e} [/mm]
Das Problem ist wieder, dass etwas unendliches und nicht unendliches herauskommt:

[mm] \limes_{n\rightarrow\infty} \bruch{1} {e^{n}}=0 [/mm]

[mm] \limes_{n\rightarrow\infty} \bruch{n} {e}=\infty [/mm]

Ich kann aber nicht [mm] \infty*0 [/mm] rechnen.

Wo ist mein Denkfehler?

Gruß Piet

        
Bezug
Konvergenz/Divergenz v. Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Di 13.12.2011
Autor: reverend

Hallo Piet,

das sieht doch schon ganz gut aus.

> Untersuchen Sie, ob die Folgen [mm](a_{n})[/mm] (mit n [mm]\in \IN)[/mm]
> konvergieren, und bestimmen Sie gegebenenfalls deren
> Grenzwert.
>  
> a)  [mm](a_{n})=\bruch{3^{n}}{2^{n+1}+n^{-1}}[/mm]
>  
> b)  [mm](a_{n})=\bruch{n}{e^{n+1}}[/mm]
>  zu a) [mm](a_{n})=\bruch{3^{n}}{2^{n+1}+n^{-1}}[/mm]
>   kann ich auch so schreiben:
>  [mm](a_{n})=\bruch{3^{n}}{2^{n}*2+n^{-1}}[/mm]
>  
> [mm]\limes_{n\rightarrow\infty}\bruch{3^{n}}{2^{n}*2+n^{-1}}[/mm]
>  
> [mm]=\limes_{n\rightarrow\infty}\bruch{3^{n}}{2^{n}*2}[/mm]
>  
> [mm]\limes_{n\rightarrow\infty}(\bruch{3}{2})^{n}*\bruch{1}{2}[/mm]
>  
> Mein Problem ist, dass
> [mm]\limes_{n\rightarrow\infty}(\bruch{3}{2})^{n}=\infty[/mm]
>  
> [mm]\limes_{n\rightarrow\infty}\bruch{1}{2}=\bruch{1}{2}[/mm]
>  
> Ich kann aber nicht [mm]\infty*\bruch{1}{2}[/mm] rechnen

Wieso nicht? [mm] \infty*\bruch{1}{2}=\infty [/mm]

>  Wie mache ich es richtig?
>  
> Zu b)
>  [mm](a_{n})=\bruch{n}{e^{n+1}}[/mm]
>  kann ich auch so schreiben
>  [mm]\limes_{n\rightarrow\infty} \bruch{1} {e^{n}}*\bruch{n}{e}[/mm]
>  
> Das Problem ist wieder, dass etwas unendliches und nicht
> unendliches herauskommt:
>  
> [mm]\limes_{n\rightarrow\infty} \bruch{1} {e^{n}}=0[/mm]
>  
> [mm]\limes_{n\rightarrow\infty} \bruch{n} {e}=\infty[/mm]
>  
> Ich kann aber nicht [mm]\infty*0[/mm] rechnen.

Das allerdings stimmt.

> Wo ist mein Denkfehler?

Da ist noch gar kein Denkfehler. Wende den Satz von l'Hospital an.

Grüße
reverend


Bezug
                
Bezug
Konvergenz/Divergenz v. Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Di 13.12.2011
Autor: piet86

Aufgabe
siehe oben

Nach l'hospital muss ich ja einfach Nenner und Zähler nach n ableiten:


[mm] (a_{n})=\bruch{n}{e^{n+1}} [/mm]    

Zähler: n'=1
[mm] Nenner:(e^{n+1})'=e^{n+1}*1 [/mm]

[mm] \limes_{n\rightarrow\infty}\bruch{1}{e^{n+1}}=0 [/mm]

Vielen dank reverend

Bezug
                        
Bezug
Konvergenz/Divergenz v. Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Di 13.12.2011
Autor: reverend

Hallo nochmal,

>  Nach l'hospital muss ich ja einfach Nenner und Zähler
> nach n ableiten:
>  
> [mm](a_{n})=\bruch{n}{e^{n+1}}[/mm]    
>
> Zähler: n'=1
>  [mm]Nenner:(e^{n+1})'=e^{n+1}*1[/mm]
>  
> [mm]\limes_{n\rightarrow\infty}\bruch{1}{e^{n+1}}=0[/mm]

Richtig. [ok]

> Vielen dank reverend

Gern geschehen.
Grüße
rev


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]