matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz/Divergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenz/Divergenz
Konvergenz/Divergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz/Divergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:02 So 20.06.2010
Autor: ms2008de

Aufgabe
Untersuchen Sie die folgende Reihe auf Konvergenz oder Divergenz:
[mm] \summe_{n=1}^{\infty} (\wurzel[n]{n} [/mm] -1)

Hallo,
Ich hab hier leider große Schwierigkeiten: Erstens habens wirs hier mit einer Nullfolge zu tun, das Cauchykriterium ist also erfüllt, aber sowohl beim Wurzel- als auch beim Quotientenkriterium wird [mm] \limes_{n\rightarrow\infty} [/mm] sup ...= 1, womit ich nicht entscheiden kann, ob die Reihe konvergiert oder divergiert. Hier auf eine Majorante oder Minorante zu hoffen scheint mir auch ziemlich unmöglich...

Hoffe jmd. hat einen Tipp für mich, vielen Dank schon mal im voraus.

Viele Grüße

        
Bezug
Konvergenz/Divergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:21 Di 22.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Konvergenz/Divergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:56 Di 22.06.2010
Autor: ms2008de

Hallo,
kann denn keiner mir helfen? Ich vermute mal ziemlich stark, dass die Reihe divergiert. Auf jeden Fall weiß ich aus dem Binomischen Lehrsatz, dass gilt: 1+ [mm] \bruch{2}{\wurzel{n}} \ge \wurzel[n]{n}. [/mm] Wenn ich so eine ähnliche Abschätzung nach unten hätte, könnt man da wohl ne Minorante finden... nur wie anstellen, das Ganze?

Viele Grüße

Bezug
                        
Bezug
Konvergenz/Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 00:13 Mi 23.06.2010
Autor: Gonozal_IX

Huhu,

kurzes Brainstorming:

[mm] $\summe_{n=1}^{\infty} (\wurzel[n]{n}-1)$ [/mm]

$= [mm] \summe_{n=1}^{\infty} (\wurzel[n]{n}-1)\bruch{\summe_{k=0}^{n-1}{(\sqrt[n]{n})}^k}{\summe_{k=0}^{n-1}{(\sqrt[n]{n})}^k} [/mm] $

$= [mm] \summe_{n=1}^{\infty}\bruch{n - 1}{\summe_{k=0}^{n-1}{(\sqrt[n]{n}})^k}$ [/mm]

Nun gilt für ausreichend große n, dass: [mm] $\sum_{k=0}^{n-1}{\sqrt[n]{n}}^k \le {(\sqrt[n]{n})}^n [/mm] = n$

Jetzt kommst bestimmt weiter.

edit:

Ok, es gilt [mm] $\sum_{k=0}^{n-1}{x}^k \le {x}^n$ [/mm] für große x, das Problem oben ist aber, dass wenn das "x" also sprich [mm] \sqrt[n]{n} [/mm] wächst, eben das n wächst und damit die Summe. Da geht die Abschätzung wahrscheinlich kaputt.

Aber helfen wird dir das hoffentlich trotzdem :-)

MFG,
Gono.

Bezug
                        
Bezug
Konvergenz/Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 00:54 Mi 23.06.2010
Autor: Gonozal_IX

Und jetzt der einfache Weg:

Es gilt ja [mm] $\left(1 + \bruch{1}{n}\right)^n \to [/mm] e$ monton wachsend

Daher gilt ab $n=3$

$n [mm] \ge \left(1 + \bruch{1}{n}\right)^n$ [/mm]

[mm] $\gdw \sqrt[n]{n} \ge [/mm] (1 + [mm] \bruch{1}{n})$ [/mm]

[mm] $\gdw \sqrt[n]{n} [/mm] - 1 [mm] \ge \bruch{1}{n}$ [/mm]

Nunjo, den Rest schaffst jetzt wirklich allein :-)

Interessanterweise sagt Wolframalpha aber, die Summe würde konvergieren gegen irgendwas um die [mm] $10^{18}$.... [/mm] aber obiges Ding besagt das genaue Gegenteil.

MFG,
Gono.

Bezug
                                
Bezug
Konvergenz/Divergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:52 Mi 23.06.2010
Autor: ms2008de


> Und jetzt der einfache Weg:
>  
> Es gilt ja [mm]\left(1 + \bruch{1}{n}\right)^n \to e[/mm] monton
> wachsend
>  
> Daher gilt ab [mm]n=3[/mm]
>  
> [mm]n \ge \left(1 + \bruch{1}{n}\right)^n[/mm]
>  
> [mm]\gdw \sqrt[n]{n} \ge (1 + \bruch{1}{n})[/mm]
>  
> [mm]\gdw \sqrt[n]{n} - 1 \ge \bruch{1}{n}[/mm]
>  
> Nunjo, den Rest schaffst jetzt wirklich allein :-)
>  
> Interessanterweise sagt Wolframalpha aber, die Summe würde
> konvergieren gegen irgendwas um die [mm]10^{18}[/mm].... aber obiges
> Ding besagt das genaue Gegenteil.
>  

Danke dir, eine wirklich elegante Art auf die Lösung zu kommen. Da liegt dann wohl Wolframalpha gehörig falsch...

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]