matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteKonvergenz - Folgen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Grenzwerte" - Konvergenz - Folgen
Konvergenz - Folgen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz - Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:42 Mo 22.05.2006
Autor: blacklc2

Aufgabe
Weisen Sie die Konvergenz der Folge [mm] (S_{n})_{n} [/mm]

[mm] S_{n}:= \summe_{j=1}^{n} \bruch{(-1)^{j+1}}{j} [/mm]        ;    [mm] n\in \IN [/mm]

nach.

So, ich hab mir da schon ein paar Gedanken gemacht.

Es ist nicht schwer zu sehen das die Folge gegen 0 konvergiert, gerade wenn ich mir Werte einsetzte und im Diagramm danach schaue!

Aber das Problem ist das ich nun nicht weiß wie ich es Nachweisen soll, denn es reicht ja nicht ein Diagramm zu zeichnen und zu zeigen das die Folge gegen 0 geht.

Wie weist man sowas nach?

mfg Danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz - Folgen: Leibniz-Kriterium
Status: (Antwort) fertig Status 
Datum: 09:57 Mo 22.05.2006
Autor: Loddar

Hallo blacklc!


Sieh mal hier, da wurde dieselbe Aufgabe bereits gestellt.


Da es sich hierbei um eine alternierende Folge / Reihe handelt, musst Du nachweisen, dass es sich bei der Folge [mm] $a_j [/mm] \ = \ [mm] \bruch{1}{j}$ [/mm] um eine monoton fallende Nullfolge handelt.

Damit ist dann gemäß []Leibniz-Kriterium auch die Konvergenz der Reihe nachgewiesen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]