matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz (-1)^n,Gerade,
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenz (-1)^n,Gerade,
Konvergenz (-1)^n,Gerade, < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz (-1)^n,Gerade,: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:45 So 09.11.2014
Autor: sissile

Aufgabe
Sei [mm] b_n =\frac{1+(-1)^n n^2}{2+3n+n^2} [/mm] (n [mm] \in \IN) [/mm]
Entscheiden Sie welche der Eigenschaften beschränkt, konvergent bzw. divergent für die gegebebene Folge vorliegt. Bestimmen Sie im Fall der Konvergenz den Grenzwert.

Hallo,
Ich habe eine Frage die in meinen Repetitorium aufgetaucht ist.

[mm] b_1=0 [/mm]
[mm] b_2=\frac{5}{12} [/mm]
[mm] b_3=-\frac{2}{5} [/mm]
[mm] b_4=\frac{17}{30} [/mm]
[mm] b_5=-\frac{4}{7} [/mm]

Ich hatte die Vermutung [mm] b_{2n} [/mm] -> + [mm] \infty [/mm]
[mm] b_{2n+1} [/mm] -> [mm] -\infty [/mm]

Aber wenn ich [mm] b_{2n}= \frac{1+(-1)^{2n} (2n)^2}{2+3(2n)+(2n)^2}=\frac{1+4n^2}{2+6n+4n^2} [/mm]
und da hätte nun [mm] b_{2n} [/mm] den Grenzwert 1. War also meine Vermutung falsch oder darf man das nicht so aufschreiben?

Beschränkt ist das ganze nach oben von 1:
[mm] b_n =\frac{1+(-1)^n n^2}{2+3n+n^2} [/mm] < 1
[mm] \gdw 1+(-1)^n n^2 [/mm] < 2 +3n + [mm] n^2 [/mm] (Nenner>0)
Fall n [mm] gerade:1+n^2 [/mm] < [mm] 2+3n+n^2 \gdw [/mm] 0 <1+3n wahre Aussage
Fall n [mm] ungerade:1-n^2 [/mm] < [mm] 2+3n+n^2 \gdw [/mm] 0 < [mm] 1+3n+2n^2 [/mm] wahre Aussage

LG,
sissi

        
Bezug
Konvergenz (-1)^n,Gerade,: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 So 09.11.2014
Autor: Al-Chwarizmi


> Sei [mm]b_n =\frac{1+(-1)^n n^2}{2+3n+n^2}[/mm] (n [mm]\in \IN)[/mm]
>  
> Entscheiden Sie welche der Eigenschaften beschränkt,
> konvergent bzw. divergent für die gegebebene Folge
> vorliegt. Bestimmen Sie im Fall der Konvergenz den
> Grenzwert.
>  Hallo,
>  Ich habe eine Frage die in meinen Repetitorium aufgetaucht
> ist.
>  
> [mm]b_1=0[/mm]
>  [mm]b_2=\frac{5}{12}[/mm]
>  [mm]b_3=-\frac{2}{5}[/mm]
>  [mm]b_4=\frac{17}{30}[/mm]
>  [mm]b_5=-\frac{4}{7}[/mm]
>  
> Ich hatte die Vermutung [mm]b_{2n}[/mm] -> + [mm]\infty[/mm]
>  [mm]b_{2n+1}[/mm] -> [mm]-\infty[/mm]

Naja, Vermutungen ...
  

> Aber wenn ich [mm]b_{2n}= \frac{1+(-1)^{2n} (2n)^2}{2+3(2n)+(2n)^2}=\frac{1+4n^2}{2+6n+4n^2}[/mm]
>  
> und da hätte nun [mm]b_{2n}[/mm] den Grenzwert 1. War also meine
> Vermutung falsch oder darf man das nicht so aufschreiben?

Notieren kannst du dies so:

    [mm] $\lim_{n\to\infty}b_{\,2n}\ [/mm] =\ 1$

und deine erste Vermutung war offenbar falsch.

  

> Beschränkt ist das ganze nach oben von 1:
>  [mm]b_n =\frac{1+(-1)^n n^2}{2+3n+n^2}[/mm] < 1
>  [mm]\gdw 1+(-1)^n n^2[/mm] < 2 +3n + [mm]n^2[/mm] (Nenner>0)
>  Fall n [mm]gerade:1+n^2[/mm] < [mm]2+3n+n^2 \gdw[/mm] 0 <1+3n wahre Aussage
>  Fall n [mm]ungerade:1-n^2[/mm] < [mm]2+3n+n^2 \gdw[/mm] 0 < [mm]1+3n+2n^2[/mm] wahre
> Aussage

Ich denke, du solltest dich vor allem noch um das Verhalten
der Teilfolge der Glieder mit ungeraden Indices kümmern.
Falls diese Folge auch konvergent sein sollte, kannst du
alle gestellten Fragen beantworten, ohne noch weitere
Schranken zu suchen.

  
LG  ,    Al-Chw.


Bezug
                
Bezug
Konvergenz (-1)^n,Gerade,: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:24 So 09.11.2014
Autor: sissile

Hallo,
Danle für deine Antwort.

[mm] lim_{n->\infty} b_{2n+1} [/mm] =-1
Es gilt ja der Satz: Sei [mm] (a_n)_{n\in\IN} [/mm] eine Folge. [mm] (a_n)_{n\in\IN} [/mm] konvergiert genau dann, wenn jede Teilfolge konvergiert. Der Grenzwert der Folge stimmt mit den Grenzwerten ihrer Teilfolgen überein.

Sagt mir der Satz dann schon, dass [mm] (b_n)_{n\in \IN} [/mm] divergent ist? Oder brauche ich dazu ein anderes Argument?

Liebe Grüße,
sissi

Bezug
                        
Bezug
Konvergenz (-1)^n,Gerade,: Antwort
Status: (Antwort) fertig Status 
Datum: 00:40 Mo 10.11.2014
Autor: Al-Chwarizmi


> Hallo,
>  Danke für deine Antwort.
>  
> [mm]lim_{n->\infty} b_{2n+1}[/mm] =-1
>  Es gilt ja der Satz: Sei [mm](a_n)_{n\in\IN}[/mm] eine Folge.
> [mm](a_n)_{n\in\IN}[/mm] konvergiert genau dann, wenn jede Teilfolge
> konvergiert. Der Grenzwert der Folge stimmt mit den
> Grenzwerten ihrer Teilfolgen überein.
>  
> Sagt mir der Satz dann schon, dass [mm](b_n)_{n\in \IN}[/mm]
> divergent ist? Oder brauche ich dazu ein anderes Argument?

Das ist soweit schon richtig. Eine Folge, die (unendliche)
konvergente Teilfolgen mit unterschiedlichen Grenzwerten hat,
kann nicht konvergent sein (also einen bestimmten Grenzwert
haben).


Hallo sissi

da also die Teilfolge der Glieder mit geraden Nummern gegen 1
und die Teilfolge der Glieder mit ungeraden Nummern gegen -1
konvergiert, gibt es keinen Grenzwert für die Folge aller Glieder.
Die Folge   $\ [mm] _{n \in \IN}$ [/mm]  ist also nicht konvergent.
Trotzdem ist sie (wenigstens) beschränkt. Die Begründung
dazu solltest du noch angeben.

LG ,   Al-Chw.


Bezug
        
Bezug
Konvergenz (-1)^n,Gerade,: Antwort
Status: (Antwort) fertig Status 
Datum: 22:54 So 09.11.2014
Autor: Marcel

Hallo Sissile,

> Sei [mm]b_n =\frac{1+(-1)^n n^2}{2+3n+n^2}[/mm] (n [mm]\in \IN)[/mm]
>  
> Entscheiden Sie welche der Eigenschaften beschränkt,
> konvergent bzw. divergent für die gegebebene Folge
> vorliegt. Bestimmen Sie im Fall der Konvergenz den
> Grenzwert.
>  Hallo,
>  Ich habe eine Frage die in meinen Repetitorium aufgetaucht
> ist.
>  
> [mm]b_1=0[/mm]
>  [mm]b_2=\frac{5}{12}[/mm]
>  [mm]b_3=-\frac{2}{5}[/mm]
>  [mm]b_4=\frac{17}{30}[/mm]
>  [mm]b_5=-\frac{4}{7}[/mm]
>  
> Ich hatte die Vermutung [mm]b_{2n}[/mm] -> + [mm]\infty[/mm]
>  [mm]b_{2n+1}[/mm] -> [mm]-\infty[/mm]

>  
> Aber wenn ich [mm]b_{2n}= \frac{1+(-1)^{2n} (2n)^2}{2+3(2n)+(2n)^2}=\frac{1+4n^2}{2+6n+4n^2}[/mm]
>  
> und da hätte nun [mm]b_{2n}[/mm] den Grenzwert 1. War also meine
> Vermutung falsch oder darf man das nicht so aufschreiben?
>  
> Beschränkt ist das ganze nach oben von 1:
>  [mm]b_n =\frac{1+(-1)^n n^2}{2+3n+n^2}[/mm] < 1
>  [mm]\gdw 1+(-1)^n n^2[/mm] < 2 +3n + [mm]n^2[/mm] (Nenner>0)
>  Fall n [mm]gerade:1+n^2[/mm] < [mm]2+3n+n^2 \gdw[/mm] 0 <1+3n wahre Aussage
>  Fall n [mm]ungerade:1-n^2[/mm] < [mm]2+3n+n^2 \gdw[/mm] 0 < [mm]1+3n+2n^2[/mm] wahre
> Aussage

nur als Ergänzung: Du machst Dir hier das Leben ein wenig zu schwer.

    [mm] ($\*$) $\frac{1+(-1)^n n^2}{2+3n+n^2}=\frac{\frac{1}{n^2}+(-1)^n}{\frac{2}{n^2}+\frac{3}{n}+1}$ [/mm]

zeigt sehr deutlich, dass [mm] $(b_n)_n$ [/mm] divergent ist.

(Du kannst hier übrigens

    [mm] $\lim_{n \to \infty}\frac{1+(-1)^n n^2}{2+3n+n^2}=\lim_{n \to \infty}\frac{\frac{1}{n^2}+(-1)^n}{\frac{2}{n^2}+\frac{3}{n}+1}=\frac{\lim_{n \to \infty}\left(\frac{1}{n^2}+(-1)^n\right)}{\lim_{n \to \infty}\left(\frac{2}{n^2}+\frac{3}{n}+1}\right)$ [/mm]

NICHT schreiben - warum darfst Du das nicht? Welche der beiden
Gleichheiten ist aber "erlaubt", welche "verboten"?

Aber: Bei *passenden Teilfolgen* kann man wenigstens auf diese Teilfolgen

    []Satz 5.5

anwenden!

Nebenbei: Auch die Beschränktheitsfragen lassen sich mit der Form [mm] ($\*$) [/mm] leicht
beantworten...)

Gruß,
  Marcel

Bezug
                
Bezug
Konvergenz (-1)^n,Gerade,: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:44 Mo 10.11.2014
Autor: sissile


> ([mm]\*[/mm]) [mm]\frac{1+(-1)^n n^2}{2+3n+n^2}=\frac{\frac{1}{n^2}+(-1)^n}{\frac{2}{n^2}+\frac{3}{n}+1}[/mm]
>  
> zeigt sehr deutlich, dass [mm](b_n)_n[/mm] divergent ist.
>  
> (Du kannst hier übrigens
>  
> [mm]\lim_{n \to \infty}\frac{1+(-1)^n n^2}{2+3n+n^2}=\lim_{n \to \infty}\frac{\frac{1}{n^2}+(-1)^n}{\frac{2}{n^2}+\frac{3}{n}+1}=\frac{\lim_{n \to \infty}\left(\frac{1}{n^2}+(-1)^n\right)}{\lim_{n \to \infty}\left(\frac{2}{n^2}+\frac{3}{n}+1}\right)[/mm]
>  
> NICHT schreiben - warum darfst Du das nicht? Welche der
> beiden
>  Gleichheiten ist aber "erlaubt", welche "verboten"?

Hallo
[mm] lim_{n->\infty} \frac{s_n}{t_n} [/mm] = [mm] \frac{lim_{n->\infty} s_n}{lim_{n->\infty} t_n} [/mm] gilt ja nur wenn [mm] (s_n) [/mm] und [mm] (t_n) [/mm] konvergent sind. Genauso bei der Addition.
Bekanntlich ist [mm] ((-1)^n) [/mm] divergent.

> Aber: Bei *passenden Teilfolgen* kann man wenigstens auf
> diese Teilfolgen
>  
> []Satz 5.5
>  
> anwenden!

Ich verstehe nicht, auf was du mich hier aufmerksam machen möchtest bezüglich der Teilfolgen!
Vlt. kannst du mir das näher erklären?

> Nebenbei: Auch die Beschränktheitsfragen lassen sich mit
> der Form ([mm]\*[/mm]) leicht
>  beantworten...)

Man sieht, dass -1 < [mm] b_n [/mm] < 1 [mm] \forall [/mm] n [mm] \in \IN [/mm]


LG,
sissi


Bezug
                        
Bezug
Konvergenz (-1)^n,Gerade,: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 Mo 10.11.2014
Autor: leduart

Hallo
[mm] lima_n/bn =lima_n/limb_n [/mm]  nur wenn [mm] a_n [/mm] und [mm] b_n [/mm] konvergent, das kannst du also nur für die 2 Teilfolgen [mm] a_{2n} [/mm] und [mm] a_{2n+1} [/mm] machen
Gruß leduart

Bezug
                                
Bezug
Konvergenz (-1)^n,Gerade,: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:58 Di 11.11.2014
Autor: sissile

Achso, klar ;)

LG,
sissile

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]