matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz + Grenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenz + Grenzwert
Konvergenz + Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz + Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:19 So 18.11.2012
Autor: a93303

Aufgabe
Prüfen Sie nach, ob an definiert durch [mm] a_{n+1} [/mm] = [mm] a^{4}_{n}, [/mm] mit a0 = [mm] \bruch{1}{2} [/mm] konvergiert, und geben Sie im Falle der Konvergenz den Grenzwert an.

Hallo,

ich hoffe mir kann hier jemand helfen.
Ich habe diese Aufgabe bekommen und habe keine Idee, wie ich anfangen soll.
Konvergenz und Grenzwert ist klar, Folgen auf Konvergenz prüfen klappt auch aber was ich hier anstellen soll bzw. wie der Ansatz ist, ist mir nicht klar :(

Vielen Dank schon mal!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz + Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 So 18.11.2012
Autor: Marcel

Hallo,

> Prüfen Sie nach, ob an definiert durch [mm]a_{n+1}[/mm] =
> [mm]a^{4}_{n},[/mm] mit a0 = [mm]\bruch{1}{2}[/mm] konvergiert, und geben Sie
> im Falle der Konvergenz den Grenzwert an.
>  Hallo,
>  
> ich hoffe mir kann hier jemand helfen.
>  Ich habe diese Aufgabe bekommen und habe keine Idee, wie
> ich anfangen soll.
>  Konvergenz und Grenzwert ist klar, Folgen auf Konvergenz
> prüfen klappt auch aber was ich hier anstellen soll bzw.
> wie der Ansatz ist, ist mir nicht klar :(

da gibt's viele Möglichkeiten. Du kannst mal, und das solltest Du auch tun,
die Folge in expliziter Form hinschreiben (dabei bitte die explizite Form
auch beweisen)!

Alternativ:
Zeige etwa, dass $0 [mm] \le a_n \le (1/2)^n$ [/mm] gilt ("schlimmstenfalls" per
Induktion).

Auch dann bist Du schnell fertig.

"Ganz böse" alternativ (weil das eigentlich viel zu umständlich ist):
Zeige, dass die Folge durch [mm] $0\,$ [/mm] nach unten beschränkt ist und (streng)
monoton fallend ist. Daraus folgt die Konvergenz der Folge.

Ist [mm] $a\,$ [/mm] dann der Grenzwert, so folgt aus [mm] $a_{n+1}=a_n^4$ [/mm] wegen der
Eindeutigkeit des Grenzwertes dann, dass
[mm] $$a=a^4$$ [/mm]
gelten muss. Bedenkt man nun, dass die Folgenglieder alle sicher [mm] $\le [/mm] 1/2$
bleiben, so ist der Grenzwert [mm] $a\,$ [/mm] damit klar bestimmbar.

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]