matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesKonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Konvergenz
Konvergenz < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:35 Di 04.10.2011
Autor: David90

Aufgabe
Untersuchen Sie die untenstehende Folge auf Kovergenz. Bestimmen Sie gegebenfalls den Grenzwert.
[mm] \vec{a_{k}} [/mm] = ( [mm] \integral_{0}^{k}{\bruch{1}{t^2 + 2t + 1} dt}, [/mm] arctan [mm] (e^{k^2})) [/mm]

Hi Leute, übe mal wieder für die Klausur und komm bei der hier nich weiter. Also so eine Folke konvergiert ja wenn alle ihre Komponentenfolgen konvergieren, also betrachtet man die einzeln. Aber wie löst man denn jetz das integral? Man muss doch eine Stammfunktion bilden oder? Steh da grad aufm Schlauch, wie macht man nochmal davon eine Stammfunktion?
Gruß David

        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 Di 04.10.2011
Autor: fred97


> Untersuchen Sie die untenstehende Folge auf Kovergenz.
> Bestimmen Sie gegebenfalls den Grenzwert.
>  [mm]\vec{a_{k}}[/mm] = ( [mm]\integral_{0}^{k}{\bruch{1}{t^2 + 2t + 1} dt},[/mm]
> arctan [mm](e^{k^2}))[/mm]
>  Hi Leute, übe mal wieder für die Klausur und komm bei
> der hier nich weiter. Also so eine Folke konvergiert ja
> wenn alle ihre Komponentenfolgen konvergieren, also
> betrachtet man die einzeln. Aber wie löst man denn jetz
> das integral? Man muss doch eine Stammfunktion bilden oder?
> Steh da grad aufm Schlauch, wie macht man nochmal davon
> eine Stammfunktion?

Es ist [mm] \integral_{0}^{k}{\bruch{1}{t^2 + 2t + 1} dt}=\integral_{0}^{k}{\bruch{1}{(t+1)^2} dt} [/mm]

Hilft das ?

FRED

>  Gruß David


Bezug
                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 Di 04.10.2011
Autor: David90

Naja nich wirklich, hätte über die semesterferien was machen sollen -.- ich kann das ableiten mit der Quotientenregel, aber ne Stammfunktion machen bin ich grad zu blöd für :( ne bestimmte Regel muss man ja nich anwenden oder?

Bezug
                        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:11 Di 04.10.2011
Autor: David90

Doch ich habs wieder:) Ist ja umgeschrieben hoch -2, dann Exponnenten eins größer machen und durch den neuen Exponenten teilen :) Bin ich blöd xD

Bezug
                                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:17 Di 04.10.2011
Autor: David90

Und wie siehts jetzt aus mit dem arctan? Wie untersucht man denn den auf Konvergenz?
Gruß David

Bezug
                                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Di 04.10.2011
Autor: fred97


> Und wie siehts jetzt aus mit dem arctan? Wie untersucht man
> denn den auf Konvergenz?

    arctan(x) [mm] \to \bruch{\pi}{2} [/mm]  für x [mm] \to \infty [/mm]

FRED


>  Gruß David


Bezug
                                                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 Di 04.10.2011
Autor: David90

ok aber da steht ja [mm] e^{k^2} [/mm] und das geht für k gegen unendlich gegen unendlich richtig? Dann stimmt das ja mit [mm] \pi [/mm] /2 :)

Bezug
                                                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Di 04.10.2011
Autor: fred97


> ok aber da steht ja [mm]e^{k^2}[/mm] und das geht für k gegen
> unendlich gegen unendlich richtig? Dann stimmt das ja mit
> [mm]\pi[/mm] /2 :)

Ja

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]