matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikKonvergenz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stochastik" - Konvergenz
Konvergenz < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: konvergent f.s., stochastisch
Status: (Frage) überfällig Status 
Datum: 18:36 Fr 08.07.2011
Autor: mikexx

Aufgabe
Hallo, liebe Helfer!

Zu zeigen ist:

fast sicher konvergent [mm] \Rightarrow [/mm] stochastisch konvergent


Wer kann mir helfen, folgenden Beweis zu verstehen?

Beweis:

Für jedes [mm]\varepsilon > 0 [/mm] gilt

[mm] P(\vert Y_n-Y\vert \geq \varepsilon)\leq P(\sup_{k\geq n}\vert Y_k-Y\vert \geq \varepsilon)\to P(\vert Y_k-Y\vert \geq \varepsilon \text{für unendlich viele k})\leq P(Y_n\not\to Y)[/mm]

Dies ist ein Beweis, den ich gefunden habe; leider verstehe ich so Manches daran nicht.

Ich fange mal an:

Das erste [mm]\leq [/mm] gilt wohl, weil [mm]\vert Y_n-Y\vert \subseteq \sup_{k\geq n}\vert Y_k-Y\vert[/mm] und der Monotonie des Wahrscheinlichkeitsmaßes.

Nun ist es so, dass [mm] \sup_{k\geq n}\vert Y_k-Y\vert \geq \sup_{k\geq n+1}\vert Y_k-Y\vert [/mm] gilt. Somit handelt es sich um eine fallende Folge und man kann bei der Limesbildung ([mm]n\to\infty[/mm]) das Limes "hereinziehen".

Dann bin ich bei [mm]P(\lim_{n\to\infty}\sup_{k\geq n}\vert Y_k-Y\vert \geq \varepsilon)[/mm].

Für unendlich viele k kommt dann da heraus:

[mm]P(\vert Y_k-Y\vert \geq \varepsilon [/mm], denn das ist ja der Limes superior und dieser ist ja nach Definition:

[mm] \bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}\vert Y_k-Y\vert \geq \varepsilon [/mm], wo herauskommt:

[mm]\vert Y_k-Y\vert \geq \varepsilon[/mm], wobei k unendlich groß ist bzw. gegen Unendlich geht.

[So erkläre ich mir also das, was hinter dem [mm] \to [/mm] [/mm] steht.]


Ist das bis hier korrekt?

Wie erklärt sich das allerletzte [mm]\leq [/mm]?

Kann man sagen:
Da man ja davon ausgeht, dass Konvergenz fast überall vorliegt, streben die [mm] Y_k [/mm] gegen Y und da [mm] k\geq [/mm] n ist, ist

[mm][mm] \vert Y_k-Y\vert \subseteq \vert Y_n-Y\vert [/mm] für unendlich viele k und also folgt das letzte [mm]\leq [/mm] wegen der Monotonie des W.-Maßes, also

[mm]...\leq P(\vert Y_n-Y\vert \geq \varepsilon)=P(Y_n\not\to Y)=0 [/mm] n.V.



Das sind meine Ideen zu dem obigen Beweis.
Wer kann mir sagen, ob ich korrekt liege und mich verbessern?

Vielen Dank!




        
Bezug
Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 So 10.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]