Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:50 Mo 03.05.2010 | Autor: | sys1980s |
Aufgabe | Man untersuche das Konvergenzverhalten der Reihe [mm] \summe_{k=1}^{\infty}a_{k}, [/mm] bei der [mm] a_{k} [/mm] von einer Stelle [mm] k_{0} [/mm] jeweils den nachfolgend angegeben Wert hat.
[mm] a_{k}=\bruch{\wurzel{k+1}-\wurzel{k-1}}{k} [/mm] |
Mit dem Quotientenkriterium komm ich irgendwie immer genau auf 1, also weiß man es nicht. Bleibt m.E., eine geeignete Majorante zu finden. Das gelingt mir aber eben nicht.
Auch habe ich bereits versucht, [mm] a_{k} [/mm] zu schreiben als [mm] a_{k}=b_{k}-c_{k} [/mm] mit [mm] b_{k}=\bruch{\wurzel{k+1}}{k} [/mm] und [mm] c_{k}=\bruch{\wurzel{k-1}}{k}, [/mm] um dann die Konvergenz der Reihen [mm] \summe_{k=1}^{\infty}b_{k} [/mm] und [mm] \summe_{k=1}^{\infty}c_{k} [/mm] zu zeigen. Ebenfalls ohne nennenswerten Erfolg.
Auch die Anwendung der 3. binomischen Formel führt mich irgendwie nicht weiter, weil ich auch für [mm] a_{k}=\bruch{2}{k(\wurzel{k+1}+\wurzel{k-1})} [/mm] mit keinem Verfahren zum Ziel komme.
|
|
|
|
Hallo sys1980,
> Man untersuche das Konvergenzverhalten der Reihe
> [mm]\summe_{k=1}^{\infty}a_{k},[/mm] bei der [mm]a_{k}[/mm] von einer Stelle
> [mm]k_{0}[/mm] jeweils den nachfolgend angegeben Wert hat.
>
> [mm]a_{k}=\bruch{\wurzel{k+1}-\wurzel{k-1}}{k}[/mm]
> Mit dem Quotientenkriterium komm ich irgendwie immer genau
> auf 1, also weiß man es nicht. Bleibt m.E., eine geeignete
> Majorante zu finden. Das gelingt mir aber eben nicht.
> Auch habe ich bereits versucht, [mm]a_{k}[/mm] zu schreiben als
> [mm]a_{k}=b_{k}-c_{k}[/mm] mit [mm]b_{k}=\bruch{\wurzel{k+1}}{k}[/mm] und
> [mm]c_{k}=\bruch{\wurzel{k-1}}{k},[/mm] um dann die Konvergenz der
> Reihen [mm]\summe_{k=1}^{\infty}b_{k}[/mm] und
> [mm]\summe_{k=1}^{\infty}c_{k}[/mm] zu zeigen. Ebenfalls ohne
> nennenswerten Erfolg.
> Auch die Anwendung der 3. binomischen Formel führt mich
> irgendwie nicht weiter, weil ich auch für
> [mm]a_{k}=\bruch{2}{k(\wurzel{k+1}+\wurzel{k-1})}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
mit keinem
> Verfahren zum Ziel komme.
Das scheint mir aber genau der rechte Weg zu sein.
Nun findest du mit dem Majorantenkrit. eine größere Reihe der Form $\sum\frac{M}{k^{\frac{3}{2}}$ mit einem $M>0$ (egal)
Ist dir bekannt, dass die Reihen des Typs $\sum\limits_{k=1}^{\infty}\frac{1}{k^{\alpha}}$ für $\alpha\le 1$ divergieren und für $\alpha>1$ konvergieren?
Die harmonische Reihe ist also Grenzreihe zwischen den konvergenten und divergenten Reihen dieses Typs.
Deine Majorante $M\cdot{}\sum\frac{1}{k^{\frac{3}{2}}}$ ist also konvergent.
Falls ihr das nicht gezeigt habt, kannst du das etwa mit dem Cauchyschen Verdichtungskriterium machen.
Das ist für allg. [mm] $\alpha$ [/mm] auf der Seite vorgerechnet...
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:12 Di 04.05.2010 | Autor: | sys1980s |
Hallo schachuzipus,
das mit [mm] 1/k^a [/mm] war mir bekannt. Allerdings ist es mir irgendwie nicht gelungen, eine geeignete Majorante zu finden. Ich hab irgendwie noch Hemmungen, wild irgendwelche Funktionen einzusetzen. Aber mit der Übung kommt das sicher. Und mit [mm] 1/k^2 [/mm] katte es bei mir irgendwie nicht funktioniert. Aber gut, jetzt geht es und ich bin froh, dass mein Ansatz doch nicht so falsch war.
Viele Grüße und vielen Dank,
sys1980s
|
|
|
|